Pediatric Influence of Cooling duration on Efficacy in Cardiac Arrest Patients

Investigator Meeting Wednesday, May 4

	NIH SIREN Emergency Trials Network
P-ICECAP	1

Welcome Dr. Frank Moler

Agenda

Time	Торіс	Speaker
6:00 PM	Welcome and Review of Agenda	Dr. Frank Moler, MD
6:10 PM	Introductions	Dr. Alexis Topjian, MD
6:30 PM	Brief History and Overview	Dr. William Meurer, MD
7:15 PM	SIREN Overview	Drs. Robert Silbergleit, MD & Sharon Yeatts, PhD
7:25 PM	Q & A	All faculty
8:10 PM	Adjourn Day 1	

NHLBI UG3HL159134, U24HL159132

Introductions

Dr. Alexis Topjian

History and Overview Dr. William Meurer

Questions

Why be adaptive?

Why study hypothermia?

How will trial work?

NHLBI UG3HL159134, U24HL159132

P-ICECAP

A randomized, response-adaptive, duration-finding, comparative effectiveness clinical trial with blinded outcome assessment.

Part 1 INTRODUCTION TO ADAPTIVE CLINICAL TRIALS

NHLBI UG3HL159134, U24HL159132

NINDS U24NS100659, U24NS100655

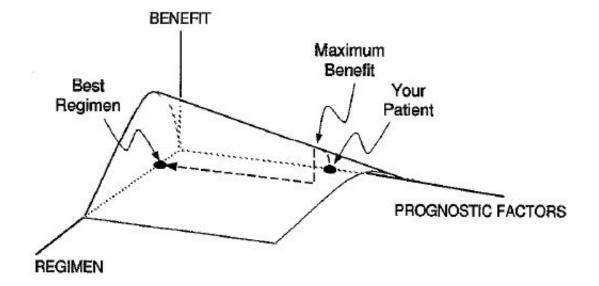
IIIII SIREN

Why Clinical Trials Stink

ANALOGY*: Clinical Trial = Diagnostic Test

	Clinical Trial	Diagnostic Test			
Looking For	Effective Treatment	Disease			
1 – Type II Error (Beta)	"Power"	Sensitivity OR True Positive Rate			
Type I Error (Alpha)	Significance Level	1- Specificity OR FALSE Positive Rate			
*Note: My analogy does not stink					

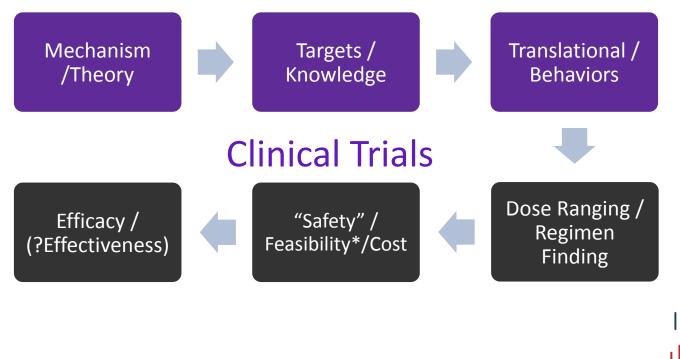
NHLBI UG3HL159134, U24HL159132


NINDS U24NS100659, U24NS100655

Clinical Trials are Models with Tons of Guesses Assumptions

- Dose from animal models is close
- No heterogeneity of effect
- Subgroups respond equally
- Some subgroups excluded
- Effect size to create "reasonable" sample size
- "Noise" in outcomes can be understood and overcome
- Duration of treatment practical
- LESSON: Make many compromises to reduce number of parameters to make model "solvable"

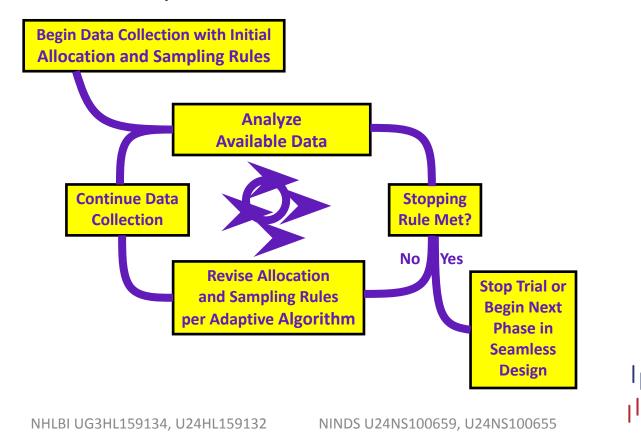
Therapeutic Response Surface



Clin Pharmacol Ther 1997;61:275-91

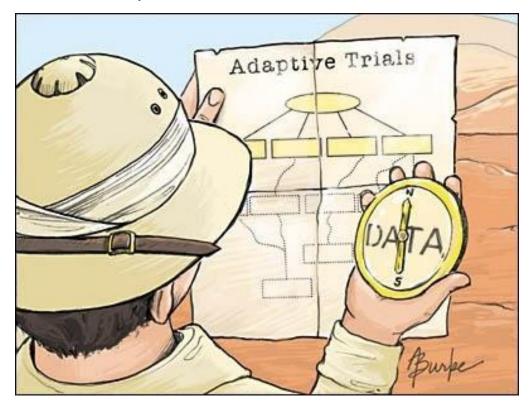
NHLBI UG3HL159134, U24HL159132

Preclinical Experiments



NHLBI UG3HL159134, U24HL159132

NINDS U24NS100659, U24NS100655


The Adaptive Process

14

The Adaptive Process

JAMA 2006;296:1955-1957.

Design a trial that leaves no (or few) regrets.

The clinical community and funders will know what to do next.

The "pre-mortem."

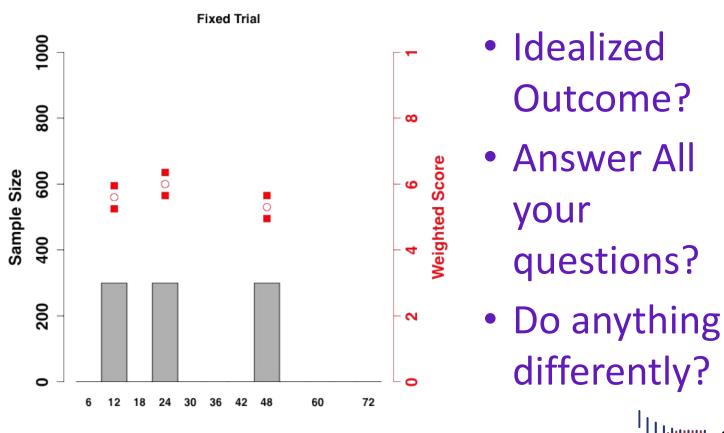
NHLBI UG3HL159134, U24HL159132

An adaptive or flexible design doesn't <u>always</u> make sense.

(We do not usually know as much before starting the trial as we will after we have data for most situations...)

ADAPT-IT 2010-2012

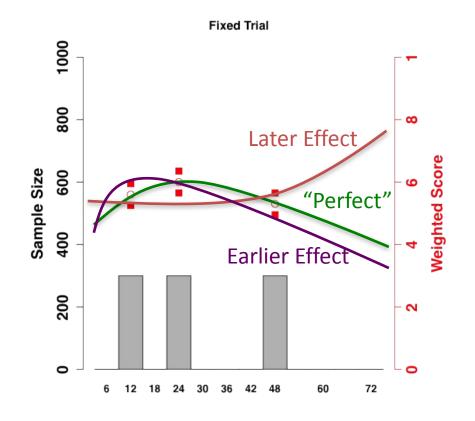
- FDA / NIH Common Fund cooperative award that to develop adaptive clinical trial designs for confirmatory, large scale trials
- Process
 - Stakeholder Meeting to present the clinical problem
 - Preliminary design Simulations and iterations
 - Stakeholder Meeting to review "final" design proposal
 - More simulations and validation


Development of protocol (IDE / clinical trial protocol)

Thematic Adaptive Motivation for (adult) ICECAP

- Fixed design
- 1800 patients
- 12, 24, 48
- Anticipated regrets

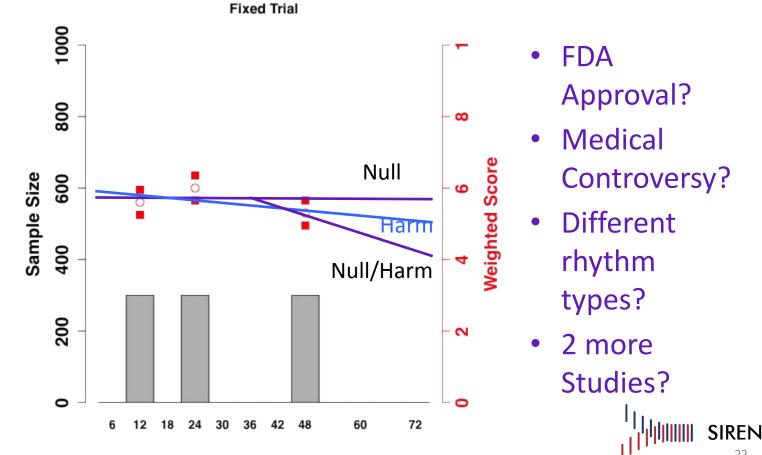
Example Outcome of Fixed



NHLBI UG3HL159134, U24HL159132 NINDS U24NS100659, U24NS100655

20

Example Outcome of Fixed (versus "truth")



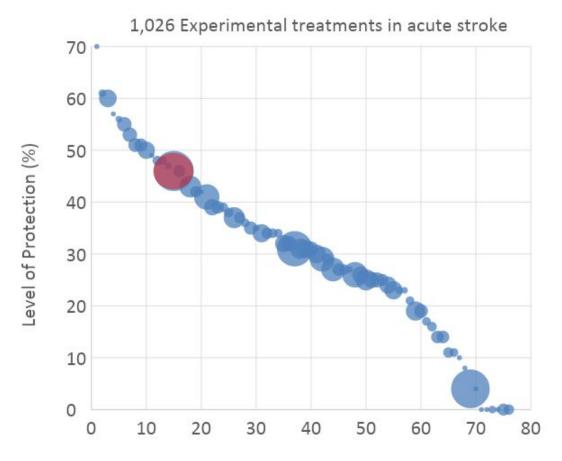
NHLBI UG3HL159134, U24HL159132 NINDS U24NS100659, U24NS100655

21

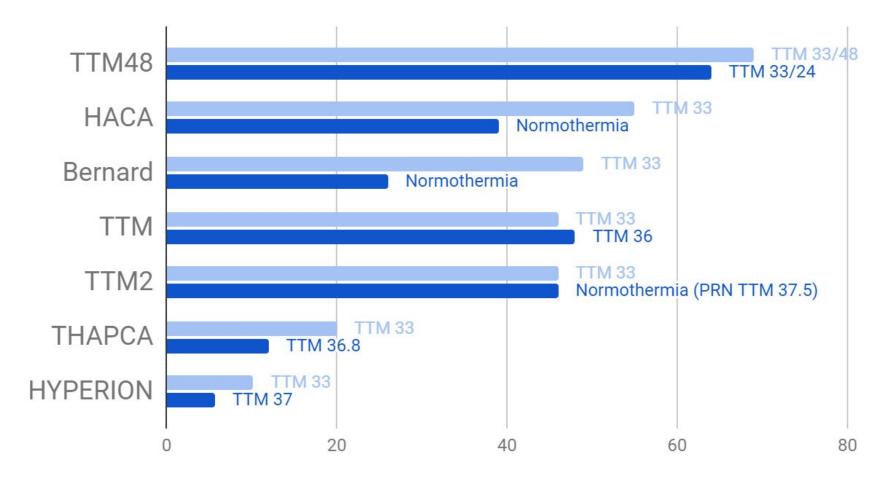
Example Outcome of Fixed (versus "truth")

NHLBI UG3HL159134, U24HL159132 NINDS U24NS100659, U24NS100655 22

Part 2 PRECLINICAL / PRIOR CLINICAL EVIDENCE

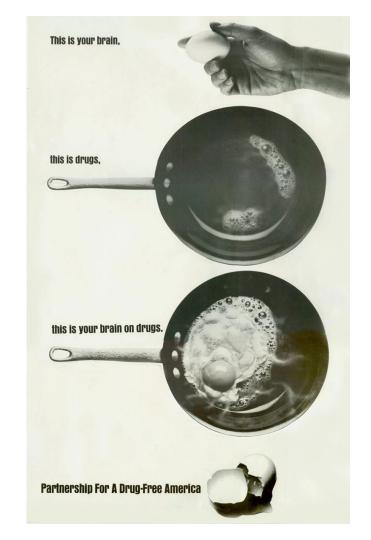


NHLBI UG3HL159134, U24HL159132



An Official Journal of the American Neurological Association and the Child Neurology Society

Ann Neurol 2006;59:467-477


Experimental Contrasts (n)	
94	favors treatment
28	neutral
0	favors control
77	favors treatment
28	neutral
0	favors control
13	favors treatment
3	neutral
1	favors control
	Contrasts (n) 94 28 0 77 28 0 28 0 13 3

% subjects with favorable neurological outcome

The brain is sensitive to temperature

Drugs = HYPERTHERMIA

History / Timeline

- 2003 THAPCA pre trial cohort study R21
- 2006 THAPCA R34
- 2009 THAPCA OH and THAPCA IH Trials U01
- 2011 ADAPT-IT ICECAP planning
- 2013 THAPCA Last Outcomes Collected
- 2015 THAPCA OH Publication
- 2016 ADULT ICECAP IDE
- 2020 ADULT ICECAP First Patient In
- 2021 P-ICECAP IDE (initial)
- 2021 P-ICECAP Award
 - 2022 (Now)

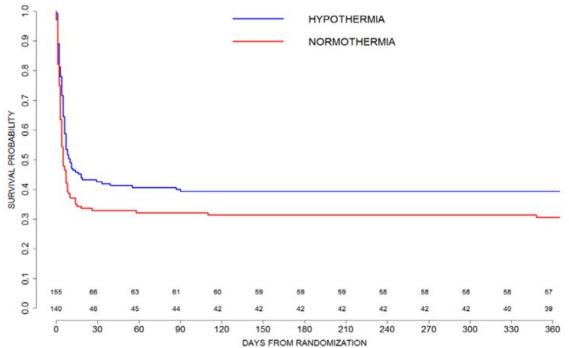
P-ICECAP

THAPCA-OH - Design

- Prospective RCT
- Out of hospital cardiac arrest
- GCS motor 4 OR less
- 48 hours of TTM to 33°C versus enforced 36.8 °C / 120 hours of TTM total in both
- Primary outcome: Survival with a good neurobehavioral outcome at 12 months of follow-up

THAPCA-OH

Outcome	Hypoth Gro		Normoth		Risk Difference	Relative Likelihood (95% CI)	P Value
		no./total	no. (%)		percentage points (95% CI)		
Primary outcome							
Alive with VABS-II score ≥70 at 1 yr	27/138	(20)	15/122	(12)	7.3 (-1.5 to 16.1)	1.54 (0.86 to 2.76)	0.14†
Detailed supportive analysis		20%		12%			0.14‡
Death	87/138	(0)	88/122	(12)			
Disability							
Profound§	16/138	(12)	11/122	(9)			
Moderate-to-severe¶	8/138	(6)	8/122	(7)			
Good functional status	27/138	(20)	15/122	(12)			



Moler FW, Silverstein FS, Holubkov R, et al. Therapeutic Hypothermia After Outof-Hospital Cardiac Arrest in Children. N Engl J Med 2015;372:1898-809.

NHLBI UG3HL159134, U24HL159132

NINDS U24NS100659, U24NS100655

Figure S1 from THAPCA-OH: Probability of survival to one year following cardiac arrest, according to assigned treatment

The two lines represent Kaplan-Meier survival rates from 0 to 365 days after cardiac arrest for patients in each study arm (p=0.04 for a log-rank test, stratified by age category, comparing survival distributions between treatment arms).

Part 3 Part 3 P-ICECAP OVERVIEW

NHLBI UG3HL159134, U24HL159132

NINDS U24NS100659, U24NS100655

Specific Aim 1: Can the efficacy of hypothermia be confirmed by evaluating duration response?

• To determine in pediatric comatose survivors of OHCA, whether the duration response curve as assessed by the VABS-3* mortality composite score is initially increasing, thus demonstrating efficacy of hypothermia versus normothermia (i.e. zero duration of cooling). Secondary endpoints include the Pediatric Cerebral Performance Category Score, Pediatric Resuscitation after Cardiac Arrest score, and survival at 12 months.

*Vineland Adaptive Behavioral Scale 3 - a standardized measure of neurobehavioral functioning

NHLBI UG3HL159134, U24HL159132 NINDS U24NS100659, U24NS100655

Specific Aim 2: Can the optimal duration of cooling be identified?

• To determine in pediatric comatose survivors of OHCA, the shortest duration of cooling that provides the maximum treatment effect as determined by a higher VABS-3 Mortality Composite Score.

Specific Aim 3: Does duration have a differential effect on safety and quality of life?

• To characterize the effect of duration of hypothermia on overall safety and adverse events, and parent reported quality of life.

NHLBI UG3HL159134, U24HL159132

P-ICECAP Comparison to Adult ICECAP

Aspect	P-ICECAP	Adult ICECAP
Durations (hours)	0-96 (10)	6-72 (10)
Eligibility Timing	Within 6 hours of ROSC - must start device before randomization must set device to 33°C within 15 minutes	Must be below 34°C within 4 hours of arrest
Sample Size	900	1800 (with different models / randomization vectors for shockable versus non-shockable)
Outcome Timing	3 and 12 months	1 and 3 months
Sites	40 (with more needing FDA approval)	Up to 75

P-ICECAP Comparison to THAPCA

Aspect	P-ICECAP	THAPCA
Duration of cooling (hours)	0 to 96 (10 durations) at 33°C	48 at 33°C or 36.8°C
Eligibility GCS Motor	5 or lower (more inclusive)	4 or lower (less inclusive)
Sample Size	900	295 randomized (260 eligible for primary outcome)
Outcome Timing	3 and 12 months	3 and 12 months
Outcome	VAB3 mortality composite (continuous)	VABS2 >= 70 and alive = good (binary)

NHLBI UG3HL159134, U24HL159132

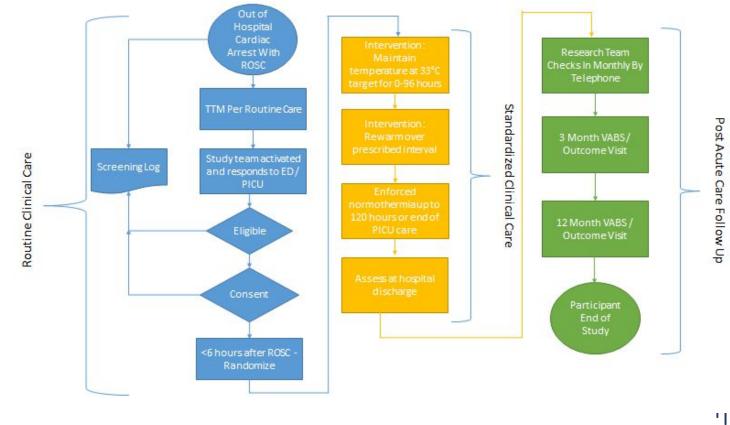
NINDS U24NS100659, U24NS100655

Inclusion

- Age 2 days to <18 years with corrected gestational age of at least 38 weeks
- coma or encephalopathy after return of spontaneous circulation (ROSC) following out-of-hospital cardiac arrest;
- requiring mechanical ventilation;
- definitive temperature control device started;
- informed consent from legally authorized representative (LAR) including randomization within 6 hours of ROSC;
- intent to maintain life support for 120 hours

Exclusion (Major)

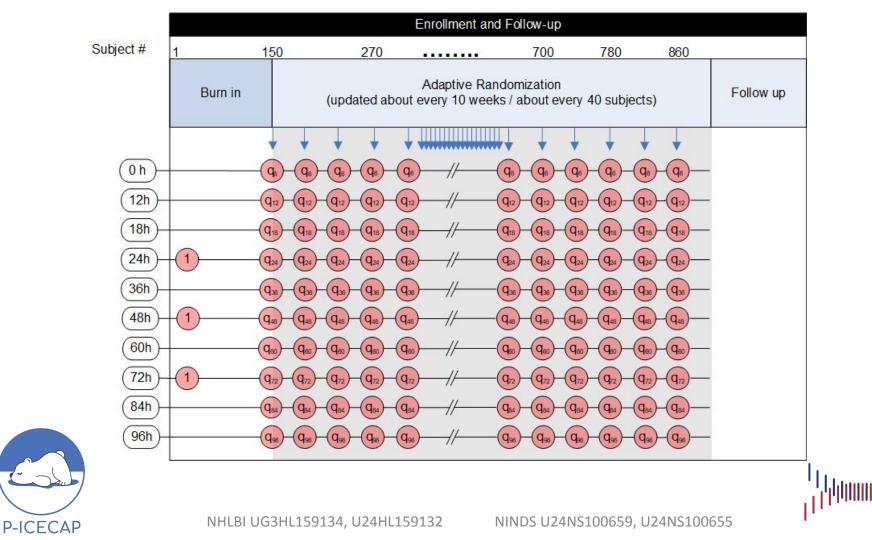
- Glasgow Coma Motor Score (GCMS) of 6,
- severe hemodynamic instability;
- pre-existing condition confounding outcome determination
- pre-existing terminal illness;
- planned early withdrawal of life support before 120 hours;
- pre-existing contraindication to cooling*;
- CPR duration > 60 minutes;
- Prisoner;
- KNOWN pregnancy



Intervention

- Duration 0-96 hours
- Measured from definitive cooling initiation and being set to 33° C (or normothermia if assigned to no additional cooling)
- Any definitive <u>surface</u>, <u>servo</u> <u>controlled</u> <u>cooling</u> <u>device</u>*
- Clinical standardization

Enrollment and Patient Flow



NHLBI UG3HL159134, U24HL159132

NINDS U24NS100659, U24NS100655

SIREN

SIREN 41

Why be adaptive

- -To get closer to the "truth"
- -To put kids where they will do best
- -To avoid cooling kids too much (or too little)
- -First 150 kids equal allocation 24,48,72 (reduce noise)

Primary Outcome: VABS-3 - Mortality Composite Score

- Vineland Adaptive Behavior Scale - Third Edition
- Standardized caregiver report measure of neurobehavioral function appropriate from birth through adulthood

NINDS U24NS100659, U24NS100655

Primary Outcome: VABS-3 Mortality Composite Score

- Measured VABS-3 composite scores range from 20-140 (mean=100, SD=15).
- Patients who die before 12 month outcome assessment will be assigned zero
- Used continuously to simultaneously account for mortality and neurological status

Other Outcomes

- PCPC (Pediatric Cerebral Performance Category)
- PedsQL (Pediatric Quality of Life Inventory TM)
- Family Burden
- Structured Neuro Exam
- Mortality at 12 months

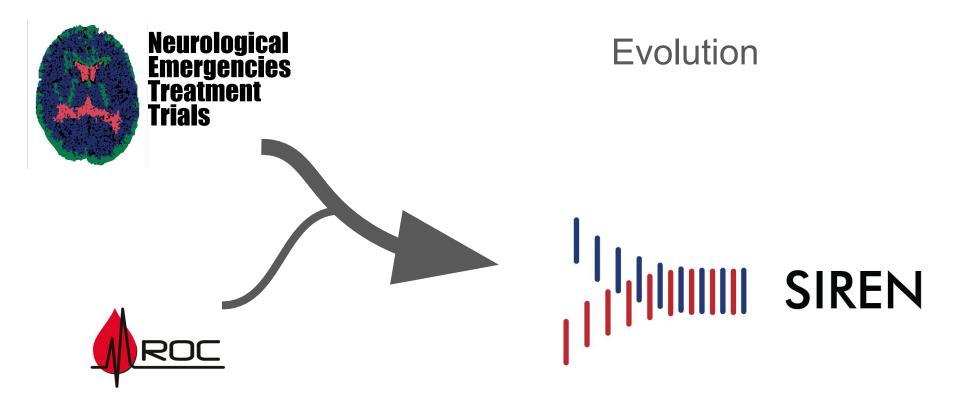
Safety Outcomes

- **Infection** (pneumonia, UTI, BSI, culture positive bacterial sepsis and other culture positive infections)
- Life-threatening cardiac arrhythmias requiring intervention (cardiac arrest, ventricular fibrillation, ventricular tachycardia, atrial arrhythmias with hemodynamic compromise)
- **Coagulopathy** Increased bleeding requiring blood product replacement
- **Neurological worsening** (i.e. cerebral edema and herniation, intractable status epilepticus, cerebral hemorrhage, cerebral infarction)

QUESTIONS?

NHLBI UG3HL159134, U24HL159132

NINDS U24NS100659, U24NS100655



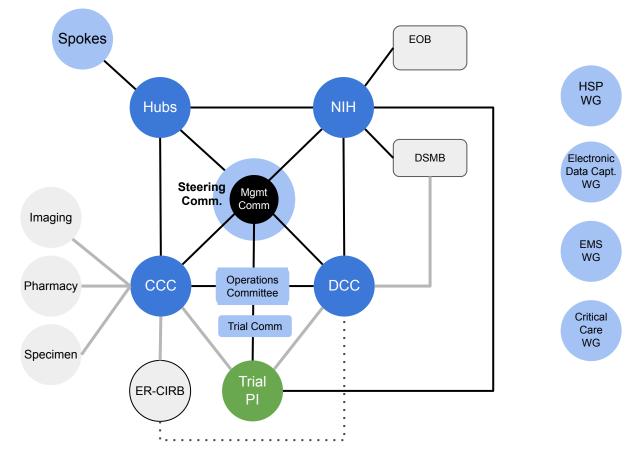
SIREN Overview

Drs. Robert Silbergleit & Sharon Yeatts

Network Overview P-ICECAP Investigators Meeting

National Heart, Lung, and Blood Institute

National Institute of Neurological Disorders and Stroke



National Center for Advancing Translational Sciences

Design principles and organizational values

- Focus on early treatment.
- Focus on meaningful outcomes for patients.
- Focus on **efficiency**.
- Focus on collaboration.
- Focus on transforming the clinical trials enterprise.

Organizational Structure

Cliff Callaway SIREN Co-PI

Valerie Stevenson Finances

William Barsan SIREN PI

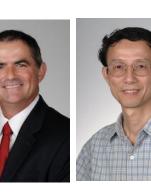
Robert Silbergleit SIREN Co-PI

CCC Leadership

SIREN Network

3/11/2022


Valerie Durkalski-Mauldin Co-PI Sharon Yeatts Co-PI


DCC Infrastructure Team

Changing What's Possible

Catherine Dillon Co-Investigator

Chris Arnaud IT Wenle Zhao Vanessa Sullivan Co-Investigator Administrator Sara Butler Data Mgmt Core Leader Lydia Foster Biostatistics

Keith Pauls IS Core Leader Renee Martin HOBIT DCC

PI

Dennis Chapman IT/IS

Caitlyn Ellerbe HOBIT Co-Investigator

Peyton Kline Data Manager HOBIT, ICECAP,

Abby Teklehaimanot

Biostatistics

HOBIT, BOOST

Liz (Dat Iu

Jonathan Beall

Biostatistics

BOOST

Liz O'Donohue Data Manager ICECAP, P-ICECAP

CCC Hubs NIH External Investigators

Additional Team Members

Liz O' Donohue

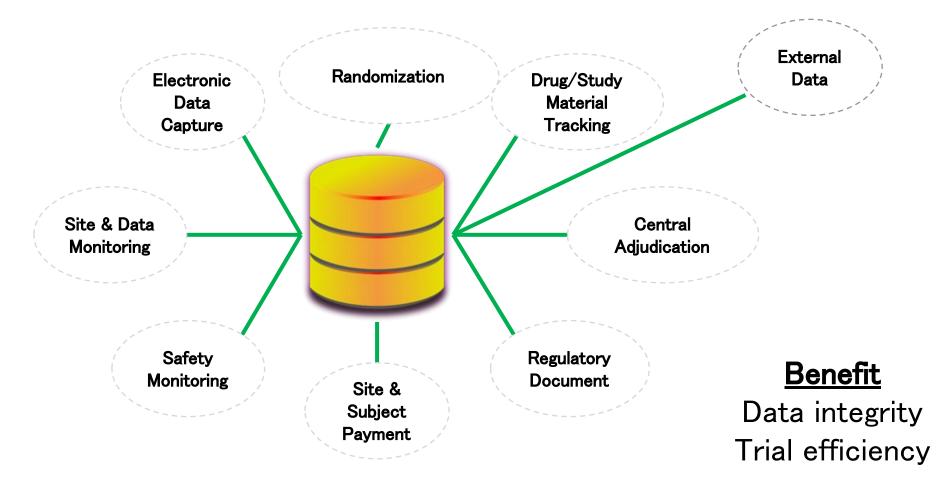
Operations

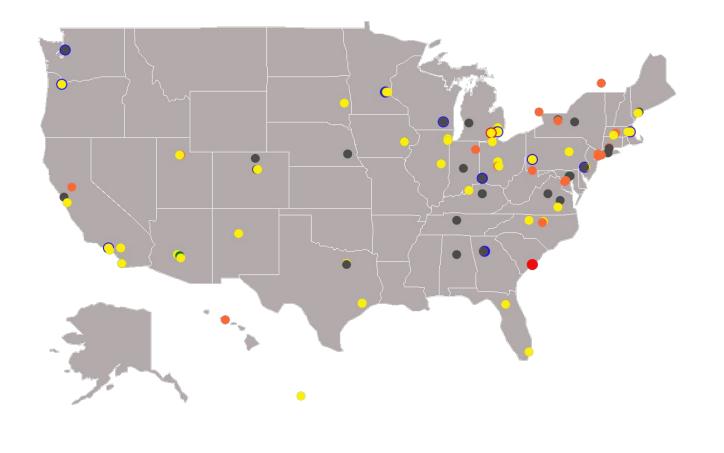
Sara Butler

Sharon Yeatts

Biostatistics

John VanBuren


Richard Holubkov


P-ICECAP Team Members

Kent Page

WebDCU[™] – Integrated system built on innovative design

● Hub-Award ● Coordinating Center ● HOBIT Site ● BOOST Site ● ICECAP Site ● C3PO Site

SIREN Clinical Trials

What else are we doing?

5

10

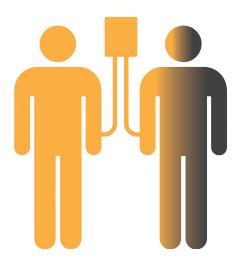
Number of SIREN clinical trials currently active

Number of SIREN trial or ancillary grants and supplements funded

17

Trials and other grant applications in the SIREN development pipeline

1287


9

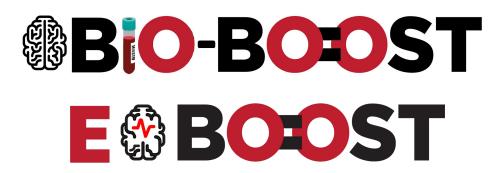
Participants enrolled as of 12 February 2022

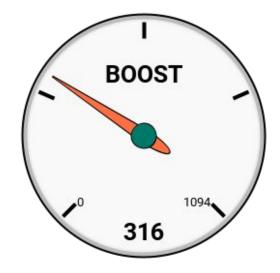
Days from C3PO last participant visit to data base lock

C3PO Clinical Trial of COVID-19 Convalescent Plasma in Outpatients

The NEW ENGLAND JOURNAL of MEDICINE

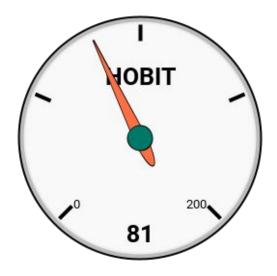
ORIGINAL ARTICLE

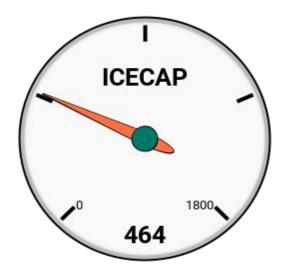

Early Convalescent Plasma for High-Risk Outpatients with Covid-19


F.K. Korley, V. Durkalski-Mauldin, S.D. Yeatts, K. Schulman, R.D. Davenport, L.J. Dumont, N. El Kassar, L.D. Foster, J.M. Hah, S. Jaiswal, A. Kaplan, E. Lowell, J.F. McDyer, J. Quinn, D.J. Triulzi, C. Van Huysen, V.L.W. Stevenson, K. Yadav, C.W. Jones, B. Kea, A. Burnett, J.C. Reynolds, C.F. Greineder, N.L. Haas, D.G. Beiser, R. Silbergleit, W. Barsan, and C.W. Callaway, for the SIREN-C3PO Investigators*

ABSTRACT

BACKGROUND





Bio HOBIT

Q&A All Faculty

Thank you!