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Examples: Weight Loss
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Intention-to-Treat Principle

 Analysis should include all randomized subjects in the 
group to which they were randomly assigned, regardless of

• Eligibility violations

• Adherence to assigned treatment

• Treatment received

• Protocol violations

 Missing data complicates the statistical analysis under the 
ITT principle.  Typical procedures in statistical programs will 
exclude from analysis subjects for whom one of the 
specified variables is missing.
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Common Reasons for Missing 
Data

 Reasons 
 Dropouts or death
 Missed visit, or visit 

conducted outside 
of specified window

 Non-response, to a 
single item in 
assessment, or to an 
entire assessment

 Site error

 Definition (Little et al, 
NEJM 2012, 367: 
1355-1360)
 ”values that are 

not available and 
that would be 
meaningful for 
analysis if they 
were observed”
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Impact of Missing Data

 Loss of information  Loss of 
power
 Available sample size lower than intended

 Bias
 Missingness may be associated with 

response to treatment
 Completers subgroup is not a random 

sample of the original
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Constructing a Missing Data 
Plan

 Minimize missing data
 By design
 During implementation

 Analysis Strategies
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Minimize Missing Data
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Minimize Missing Data
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Terminology: Mechanisms
• Missing Completely at Random (MCAR): missingness does not 

depend on either observed or unobserved variables (baseline 
covariates, outcome measures either observed or unobserved)

• Coordinator forgot to collect data

• Missing at Random (MAR): missingness is independent of 
unobserved data, conditional on observed data

• Patient withdrawal related to previous response

• Missed visits related to treatment assignment

• Missing Not at Random (MNAR): missingness depends on 
unobserved data

• Patient withdrawal related to non-response to treatment

• Lower incomes may be less likely to report income
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MCAR
 missingness does not depend on either observed or 

unobserved variables
 Implications for analysis

 Complete sample is a random subsample of the full

 Standard analysis methods valid

 Parameter estimates unbiased

 Power may be lost

 Evaluate assumption by comparing distributions of observed 
variables between dropouts and completers; significance 
difference implies MCAR is not valid assumption
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MAR

 missingness is independent of unobserved 
data, conditional on observed data

 Implications for analysis
 Missingness is explained by observed data

 Parameter estimates valid as long as variables related 
to missingness are controlled for in analysis
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MNAR

 missingness depends on unobserved data
 Implications for analysis

 Missingness is NON-ignorable

 Mechanism must be modeled
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Analysis Strategies

 Listwise deletion (aka complete case)
 Deletes entire record for which any of the specified 

variables is missing

 Default in most statistical software packages

 May be acceptable if minimal missingness (less than 
5%?)

 Ignores differences between completers and dropouts

 Biased estimates if data are not MCAR

 Loss of power

 Does not adhere to ITT principle
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Analysis Strategies: Single 
Imputation

 Substitutes an estimated value in place of the 
missing value

 One-time substitution
• Last Observation Carried Forward: substitutes last 

observed outcome (has been criticized in the literature)

• Worst case: substitutes worst observed value

• Best/Worst Case: substitutes best observed value in 
placebo group and worst observed value in tx group

• Mean: substitutes mean of non-missing values

• Hot-deck: substitutes mean in homogeneous strata

• Regression: substitutes prediction from a regression model
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Analysis Strategies: Single 
Imputation

 Easy to implement
 May cause systematic bias in parameter 

estimate
 Does not account for uncertainty in imputation
 Increased Type I error rate
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Analysis Strategies: Multiple 
Imputation

 Approach
• Replace each missing value with a plausible value, ‘drawn’ from 

a distribution derived from an appropriate statistical model.

• Repeat m times, to obtain m ‘complete’ data sets

• Analyze each using standard procedures

• Analysis results from each of m complete data sets are then 
combined in order to obtain a single inference

 Introduces appropriate random error into imputation 
process

 Yields approximately unbiased parameter estimates

 Uses all available data
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Sample Size Calculations

 Anticipated loss should be accounted for
 Simple inflation for anticipated loss is not sufficient
 Inflation should account for attenuation of treatment 

effect
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