Study Drug Formulation and Supply Issues

Pat Bolger, R.Ph., MBA
Director, Clinical and Business Affairs
Clinical Materials Services Unit (CMSU)
Clinical Trial Drug Supply Logistics Topics

- Single Center vs. Multi-Center Trials
- Sourcing of Study Drug
- Blinded vs. Open-Label
- Primary and Secondary Packaging
- Labeling
- Impact of Treatment & Enrollment Durations
- Subject Specific vs. IVRS/IWRS
- Storage Condition Considerations
- Distribution Logistics
- Disposition of Study Drug at Conclusion of Study
Clinical Trial Drug Supply
Single Center vs. Multi-Center

Practice of Pharmacy (prescription) vs.
“cGMP” Processing (batch record)
Clinical Trial Drug Supply
Overview of cGMP Requirements

- GMP = Good Manufacturing Practices
- “c” = current
- Federal Regulations (FDA) required when introducing clinical trial materials into interstate commerce.
- cGMP’s are quality standards covering all aspects of pharmaceutical processing and distribution.
- GMP philosophy requires that activities are documented by two individuals as “Done By” and “Checked By”

- Pharmacy – Regulated by State Boards of Pharmacy
Definitions

- **Drug Substance**: Active Pharmaceutical Ingredient (API) or “Raw Drug Substance”

- **Drug Product**: a finished dosage form, for example, tablet, capsule, solution, etc., that contains an active drug ingredient generally, but not necessarily, in association with inactive ingredients. The term also includes a finished dosage form that does not contain an active ingredient but is intended to be used as a placebo.
Clinical Trial Drug Supply
Sourcing of Study Drug

- API (Active Pharmaceutical Ingredient) or raw material
- Bulk Drug Product - Finished dosage form (e.g. tablet, capsule, solution).
- Packaged Drug Product – Bottles, blister cards, etc.

Vendor Selection
 - Utilize GMP compliant contract manufacturing organizations (CMO).
 - Assure robust supply chain with dependable lead times.

Non-Drug Products
 - Packaging Components (bottles, kit boxes, labels, etc.)
 - Study accessories (test kits, totes, counting trays etc.)
Lead Time for the Entire Supply Chain (Months!!)

- Time to receive API and all required excipients
- Time to receive components: bottles, caps, cotton, boxes, labels, seals etc.
- Time for Manufacturing (including getting in the manufacturing queue)
- Time for Primary packaging and any resting period
- Time for Secondary packaging and labeling
- Time for Distribution to sites

In all of above also factor in:
- Time for transit between vendors
- Time for custom clearance
Quantities to Order

- (Dosage strength \times doses/day) \times (# dosing days/subject + plus side of each visit window) \times total number of subjects

 PLUS

- Overage: to account for manufacturing waste, loss, damage, AND extra supplies at the sites that may never be used.
 - Industry standard is 15-30% for a traditional trial based on study size (e.g. most phase III studies use 30%)
 - Overage can be decreased via use of an IVRS/IWRS

- Must be based on the final bottle, kit etc. configuration as the configuration itself may already have overage
Forecasting for Resupplies

Factor in:
- Expiry/Retest dates
- Lead time/costs to manufacture multiple batches
- Storage constraints at vendor packaging materials
- Transportation/Customs costs for multiple shipments
- Develop programs/reports during the planning phase that will take enrollment rates, premature withdrawals, dose suspensions, etc. into account
Clinical Trial Drug Supply
Blinded vs. Open-Label

- Common Blinding Methods
 - Over encapsulate active tablets/capsules and manufacture matching placebo capsules
 - Identically formulated active and placebo dosage forms

- Blindness Evaluation Includes
 - Drug Product
 - Packaging
 - Labeling
Clinical Trial Drug Supply
Blinding

- Appearance (Color)
 - Try to avoid dyes related to sensitivities (e.g. yellow – tartrazine)

- Taste – More common with liquid formulations.

- Smell

- Texture – More of an issue with non-solid oral dosage forms.
Sample Kit Label

Protocol Number: INO-PD-P2-2008
Study Acronym: SURE-PD

Enrollment ID No.: XXXXX Kit Box No.: X
Subject Number: ________ Subject’s Initials: _______
Date Dispensed: __________

Contents: 6 bottles, each containing 100 capsules of Inosine 500 mg or matching Placebo

Directions: Use only as directed by a physician.
To be taken by mouth. This product is an investigational product to be dispensed only by a qualified investigator.

Storage: Controlled Room Temperature 15°C - 30°C (59°F - 86°F)

Caution: New drug limited by law to investigational (clinical trial) use only.
Keep out of reach of children.

Manufactured by: Azopharma Contract Pharmaceutical Services,
10320 USA Today Way, Miramar, FL 33025

Distributed by: Clinical Materials Services Unit (CMSU),
77 Ridgeland Rd., Rochester, NY 14523
Sample Bottle Label

Protocol No.: INO-PD-P2-2008
Enrollment ID No.: XXXXX
Bottle No.: X
Subject No.: __________

Contents: Each bottle contains 100 capsules of either Inosine 500 mg or matching Placebo.

Directions: Use only as directed by a physician. To be taken by mouth. This product is an investigational product to be dispensed only by a qualified investigator.

Storage: Controlled Room Temperature 15° - 30°C (59° - 86°F)

Caution: New drug limited by law to investigational (clinical trial) use only. Keep out of reach of children.

Manufactured by: Azopharma Contract Pharmaceutical Services, 10320 USA Today Way, Miramar, FL 33025
Distributed by: Clinical Materials Services Unit (CMSU), 77 Ridgeland Rd., Rochester, NY 14623

Study Acronym: SURE-PD
Kit Box No.: X
Date Dispensed: __________
Subject’s Initials: __________
Blinded Dosing Regimen

Example:
- Three Treatment Arms (Placebo, 100 mg and 300 mg)
 - Take One (1) capsule from each of three bottles once daily.
 - Placebo = Three bottles of placebo capsules (P – P – P)
- 100 mg = One bottle of 100 mg capsules and two bottles of placebo capsules (A – P – P)
- 300 mg = Three bottles of 100 mg capsules (A – A – A)
Clinical Trial Drug Supply
Blinded Titration Phase

Example:
- Two-week dose titration period (150 mg up to 300 mg)
- Week 1 – Subjects will take one capsule daily from Bottle A.
- Week 2 – Subjects participants will continue to take one capsule daily from Bottle A and add one capsule daily from Bottle B.

<table>
<thead>
<tr>
<th>Treatment Arm</th>
<th>Bottle A</th>
<th>Bottle B</th>
</tr>
</thead>
<tbody>
<tr>
<td>150mg</td>
<td>150mg Capsules</td>
<td>Placebo Capsules</td>
</tr>
<tr>
<td>300mg</td>
<td>150mg Capsules</td>
<td>150mg Capsules</td>
</tr>
<tr>
<td>Placebo</td>
<td>Matching Placebo Capsules</td>
<td>Matching Placebo Capsules</td>
</tr>
</tbody>
</table>
Clinical Trial Drug Supply
Blinded Dose Reduction

Example:
- Step 1 – Discontinue capsule from Bottle A

<table>
<thead>
<tr>
<th>Treatment Arm</th>
<th>Bottle A</th>
<th>Bottle B</th>
</tr>
</thead>
<tbody>
<tr>
<td>150mg</td>
<td>150mg Capsules</td>
<td>Placebo Capsules</td>
</tr>
<tr>
<td>300mg</td>
<td>150mg Capsules</td>
<td>150mg Capsules</td>
</tr>
<tr>
<td>Placebo</td>
<td>Matching Placebo Capsules</td>
<td>Matching Placebo Capsules</td>
</tr>
</tbody>
</table>
Clinical Trial Drug Supply
Subject Use Considerations

- Formulation affects compliance:
 - Large tablets/capsules may be difficult to swallow

- Packaging affects compliance:
 - Child resistant bottles caps and blister packets may be a problem to open
 - Small, poorly differentiated labels may cause confusion
Clinical Trial Drug Supply
Primary Packaging

Refers to packaging that immediately encloses a product.

It provides most of the strength and barrier needed to safeguard a product’s purity, potency and integrity from the time it is packaged until it is used by the subject.
Clinical Trial Drug Supply
Primary Packaging - Types

- Glass Bottles (amber/clear)
- Polymer Bottles & Closures (e.g. PET, HDPE, etc.)
- Blisters (many different types of materials)
- Tubes, sprays, pumps
Clinical Trial Drug Supply
Primary Packaging – Stability Testing

- Stability Study - List of tests, analytical procedures, criteria, test time points, storage conditions for duration of the study.

- Required when the dosage form is altered (e.g. over encapsulated for blinding purposes) and/or if the packaging has changed from its original, approved container.

- Types of Standard Stability Programs
 - Ambient Conditions (25° C/60%RH) – 12+ Months
 - Intermediate Conditions (30° C/65%RH) – 6+ Months
 - Accelerated Conditions (40° C/75%RH) – 6+ Months
Retest Date (Investigational Product)

- The date assigned by the manufacturer after which the drug substances need to be examined (retested) to ensure that they remain within suitable specifications for use in the manufacture of a drug product.
Expiration Dates (Marketed Products)

- Based on body of stability data of the drug in its original closed container.
- It does not mean that drug was unstable after a longer period; it means only that real-time data or extrapolation from accelerated degradation Studies indicate that the drug will still be stable at that date
- Typically 2-3 years
- Once the original container is open the stability of the product can no longer be guaranteed
Clinical Trial Drug Supply
Examples of Analytical Testing

- Disintegration – A physical test that measures the time in which a solid dosage form disintegrates in water.
- Dissolution - A standardized method for measuring the rate of drug release from a dosage form.
- Assay – Measures the percentage of active ingredient in the test product.
- Microbiologic Testing – Test for micro contamination
- Preservative Effectiveness – Tests for effectiveness of preservative system (mostly non-solid dosage forms in multi-use containers)
Clinical Trial Drug Supply
Enrollment Duration

- Duration of enrollment is critical to determining how often study drug will need to be ‘refreshed’ over the course of the study.

- Shelf-life of commercial product is typically 2-3 years and best to plan for 18-24 months of shelf-life remaining at time of initial distribution to sites.

- Studies running longer than 18-24 months will likely require a second manufacturing/packaging campaign of study drug.
Slower than expected enrollment is the single biggest challenge to managing expiration dating.

Often significant pressure for FPI; however, better to wait until as many sites as possible are ready to begin enrolling.
Clinical Trial Drug Supply
SOA/Visit Window Considerations

- Standardize interval of dispensing visits as much as possible.
 - Early visits may dispense just a partial kit
 - For example, 6-month kits with 6 bottles, may dispense 2 bottles at baseline and 4 bottles at a Month 2 visit.

- Maintain a consistent visit window.
 - Recent study was +/- 7 days in Year 1 and then +/- 14 days in Years 2-3
 - One-size kits didn’t cover complete visit interval in Years 2-3.

- Always keep visit window in mind when designing kits.
 - For example, 3-month (13 weeks or 91 days) kit with a +/- 5 day visit window will require a 101 days supply.
Clinical Trial Drug Supply
Storage Condition Considerations

- Frozen
- Refrigerated
- Room Temperature
- Light Sensitive
- Moisture Sensitive
- Transportation
 - Supplies that are temperature sensitive may require special temperature controls and monitoring while in-transit to ensure constant temperature (refrigerated truck, temperature monitoring devices).
- Most sites have limited storage capabilities (plan initial and restock supplies with site constraints in mind)
Clinical Trial Drug Supply
In-Transit Temperature Monitoring

TempTale Device
Clinical Trial Drug Supply
In-Transit Temperature Monitoring

TempTale Report
Drug Accountability

- Accountability needs to occur throughout the entire supply chain
- Ensure SOPs in-place at sites to address accountability
- Create appropriate drug dispensing/accountability logs to be used by sites for drug accountability.
Drug Accountability

<table>
<thead>
<tr>
<th>Visit #</th>
<th>Kit #</th>
<th>Dispensed By (Initials)</th>
<th>Total Newly Dispensed #</th>
<th>DATE Dispensed (MM/DD/YEAR)</th>
<th>DATE Returned (MM/DD/YEAR)</th>
<th>Complete Kit Returned (0 = No, 1 = Yes)</th>
<th># Returned</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>3B</td>
<td></td>
<td></td>
<td>Packets 396</td>
<td>/ /</td>
<td>/ /</td>
<td></td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td></td>
<td></td>
<td>Packets 396</td>
<td>/ /</td>
<td>/ /</td>
<td></td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td></td>
<td></td>
<td>Packets 396</td>
<td>/ /</td>
<td>/ /</td>
<td></td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td></td>
<td></td>
<td>Packets 396</td>
<td>/ /</td>
<td>/ /</td>
<td></td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td></td>
<td></td>
<td>Packets 396</td>
<td>/ /</td>
<td>/ /</td>
<td></td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>T01</td>
<td></td>
<td></td>
<td>Packets 396</td>
<td>/ /</td>
<td>/ /</td>
<td></td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td></td>
<td></td>
<td>Packets 396</td>
<td>/ /</td>
<td>/ /</td>
<td></td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>T02</td>
<td></td>
<td></td>
<td>Packets 396</td>
<td>/ /</td>
<td>/ /</td>
<td></td>
<td>/</td>
<td></td>
</tr>
</tbody>
</table>

Note: In the event that site staff or the participant has counted the packets prior to using a kit and notices a discrepancy, please cross off the preprinted number and write in the correct amount.

Copyright © 2002 University of Rochester. All Rights Reserved.
Clinical Trial Drug Supply
Disposition of Study Drug at Conclusion of Study

- Disposition of materials remaining at site following final accountability:
 - Dispose on site according to institutional policies
 - May encounter local environmental restrictions
 - Return to distributor
 - Send to third-party destruction company (e.g. controlled substances)

- Disposition of materials remaining in central inventory
 - Return to sponsor
 - Send to third party destruction company
Clinical Materials Services Unit (CMSU)
References

- 21 CFR part 210, 211, 312.23(7) and 812
- Guidance Documents:
 - CGMP for Phase 1 Investigational Drugs (http://www.fda.gov/cder/guidance/GMP%20Phase1IND61608.pdf)
- Bryom, B. Using IVR in Clinical Trial Management. Applied Clinical Trials. October 2002