

Being an Effective Consumer of Preclinical Research

THE SAFETY PERSPECTIVE

Dietrich Haubenberger

Disclosures

Dietrich Haubenberger is a full-time employee of Neurocrine Biosciences, Inc.

Questions to be answered with pre-clinical data:

- Is it safe to put drug candidate into humans?
- What is an safe dose for human clinical trials?
 - Starting dose
 - End dose
- What are dose-limiting toxicities?
 - ▶ Therefore: what should be monitored in clinical trials?
- What could be potential toxicities that would be difficult to monitor in clinical trials?

General principles: Non-clinical testing

- Main goals
 - Identification of organ toxicity
 - 2. Relationship to drug exposure
 - 3. Determination of on- and off-target effects
 - 4. Potential relevance to humans
 - 5. Identification / qualification of safety biomarkers to monitor in clinic
- Non-clinical safety testing regimens depend on
 - 1. Type of therapeutic (small molecule, biologic, etc.)
 - 2. Therapeutic indication (CNS, etc.)
 - Scope and design of first-in-human trial (treatment duration, route of administration, etc.)

What should I know about my drug:

IND: FDA Form 1571

12. CONTENTS OF APPLICATION This application contains the following items: (Check all that apply)				
1. Form FDA 1571 [21 CFR 312.23(a)(1)]				
2. Table of Contents [21 CFR 312.23(a)(2)]				
3. Introductory statement [21 CFR 312.23(a)(3)]				
4. General Investigational plan [21 CFR 312.23(a)(3)]				
5. Investigator's brochure [21 CFR 312.23(a)(5)]				
6. Protocol(s) [21 CFR 312.23(a)(6)]				
a. Study protocol(s) <i>[21 CFR 312.23(a)(6)]</i>				
☐ b. Investigator data [21 CFR 312.23(a)(6)(iii)(b)] or completed Form(s) FDA 1572				
☐ c. Facilities data [21 CFR 312.23(a)(6)(iii)(b)] or completed Form(s) FDA 1572				
d Institutional Review Board data [21 CFR 312 23(a)(6)(iii)(b)] or completed Form(s) FDA 1572				
7. Chemistry, manufacturing, and control data [21 CFR 312.23(a)(7)]				
Environmental assessment or claim for exclusion [21 CFR 312.23(a)(7)(iv)(e)]				
8. Pharmacology and toxicology data [21 CFR 312.23(a)(8)]				
9. Previous human experience [21 CFR 312.23(a)(9)]				
☐ 10. Additional information [21 CFR 312.23(a)(10)]				

What should I know about my drug:

- CMC: Chemistry, Manufacturing, and Control
 - ▶ A drug product is composed of
 - Drug substance (API)
 - Excipients
 - Impurities
 - Container
 - Data on Identity, Strength, Purity, and Quality of drug
 - Additional Information:
 - Manufacturer, Storage, Stability, etc.

What should I know about my drug:

- Pharmacology & Toxicology
 - Pharmacological effect and mechanism in animals
 - ▶ Absorption, Distribution, Metabolism, Excretion
 - Toxicology (acute/subacute/chronic)
 - Safety pharmacology per systems:
 - ► Cardiovascular, CNS, pulmonary, etc.
 - Special toxicology tests related to mode of administration
 - e.g., dermal toxicology
 - Genetic toxicology (often in vitro)

Once First-in-Human started, done with pre-clinical?

non-clinical development

CMC for Phase 1 Pharmacology Acute Toxicology CMC: Alternate formulations, lots, etc. Chronic Toxicology Pharmacology of alternate formulations Reproductive toxicology Addtl. safety pharmacology

. . .

Non-Clinical Safety for IND – the regulatory view

Off the shelf FDA-approved drug:

- Assume that the drug product meets animal toxicology standards for maximum approved dose and length of exposure per label.
- If higher dose, longer duration, different formulation, or different route of administration is planned than what is approved in the label, FDA may require additional non-clinical studies.
- Different patient population: different risk/benefit ratio and propensity for safety events
- If combination of more than one approved drugs are given: FDA may require Drug-Drug-Interaction studies
- CMC: if used exactly as marketed: label sufficient

Non-Clinical Safety for IND the regulatory view

Investigational drug supplied by a different sponsor

- ▶ Obtain a letter allowing reference to another IND.
- Ask for and make yourself familiar with the Investigator's Brochure (IB)
- Must support the planned dose, duration, and route of administration.

Dietary supplement

- ▶ Typically not an approved drug without approved safe dose.
- No non-clinical toxicology can be assumed.
- If used as drug in a clinical trial: it's a drug, and must adhere to similar requirements as "regular" pharmaceuticals.

Investigational drug you make yourself

Generally must provide full set of non-clinical pharmacology and toxicology data using you own product.

How to pick a starting dose

- You might not need additional non-clinical information if ...
 - An FDA-approved dosing range is available (see label)
 - Data in the literature, or any other study that is available to you supports dose range, duration of exposure, and mode of administration
 - Animal studies
 - Human experience
 - ► CAVEAT: Reports/publications must be specific
 - ▶ N of exposed animals, humans
 - Doses, duration of exposure, mode of administration
 - Ideally: obtain data sets!

From animal to human ...

- If no previous human experience, estimate *Maximum Recommended Starting Dose* (MRSD) using 5 steps:
- 1. NOAEL
- 2. Human Equivalence Dose
- 3. Species Selection
- 4. Safety Factor
- 5. Pharmacologically Active Dose

Guidance for Industry

Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers

> U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER)

> > July 2005 Pharmacology and Toxicolog

J:\/GUIDANC\5541fnlcln1.d

Step 1: NOAEL

- No Observed Adverse Effect Level
- Definition
 - "The highest dose level that does not produce a significant increase in adverse effects in comparison to the control group."
 - ► AEs that are *biologically significant* should be considered for determination of NOAEL
- Benchmark for safety when derived from appropriate animal studies
- Can serve as the starting point for determining a reasonably safe starting dose of a new therapeutic in humans

Step 2: Human Equivalent Dose (HED)

- Toxic endpoints (e.g., MTD) are assumed to scale well between species when normalized to body surface area
- HED can be calculated using body surface area (mg/m²) converted into mg/kg using standardized species-specific scaling factors

Table 1: Conversion of Animal Doses to Human Equivalent Doses Based on Body Surface Area				
	To Convert Animal Dose in	To Convert Animal Dose in mg/kg to HED ^a in mg/kg, Either:		
Species	mg/kg to Dose in	Divide	Multiply	
	mg/m², Multiply	Animal Dose By	Animal Dose By	
	by k _m			
Human	37			
Child (20 kg) ^b	25			
Mouse	3	12.3	0.08	
Hamster	5	7.4	0.13	
Rat	6	6.2	0.16	
Ferret	7	5.3	0.19	
Guinea pig	8	4.6	0.22	
Rabbit	12	3.1	0.32	
Dog	20	1.8	0.54	
Primates:				
Monkeys ^c	12	3.1	0.32	
Marmoset	6	6.2	0.16	
Squirrel monkey	7	5.3	0.19	
Baboon	20	1.8	0.54	
Micro-pig	27	1.4	0.73	
Mini-pig	35	1.1	0.95	

^a Assumes 60 kg human. For species not listed or for weights outside the standard ranges, HED can be calculated from the following formula:

HED = animal dose in mg/kg x (animal weight in kg/human weight in kg) $^{0.33}$.

 $^{^{\}rm b}$ This k_m value is provided for reference only since healthy children will rarely be volunteers for phase 1 trials.

^c For example, cynomolgus, rhesus, and stumptail

Step 3: Species selection

- If more > 1 species were studied, which HED to pick?
- Factors to consider
 - Animal model most predictive of human toxicity
 - Differences in absorption, distribution, metabolism, excretion (ADME)
 - For Biologics: does model express relevant receptors/epitopes?
- In absence of data on species relevance: choose species with *lowest* HED

Step 4: Safety Factor

- Goal: providing a margin of safety for protection of human subjects receiving the initial clinical dose
- Allows for variability in extrapolating from animal tox studies resulting
- Default safety factor: 10
 - Practically: divide appropriate HED by 10
 - ▶ Reasons for <u>increasing</u> the safety factor: steep dose response curve, severe/irreversible toxicities, non-monitorable toxicities, toxicities without premonitory signs, animal model with limited utility, etc.
 - Reasons for <u>decreasing</u> the safety factor: therapeutic is member of well-characterized class, easily monitorable toxicities, etc.

Step 5: Pharmacologically active dose (PAD)

- Definition:
 - ► The PAD is the lowest dose tested in an animal species with the intended pharmacological activity
- Typically derived from appropriate pharmacodynamic models.
- Once MRSD is determined, compare to the HED of the PAD.
- ▶ If needed, adjust MRSD if *pharmacologic* HED is lower
- PAD might also be a more sensitive indicator of potential toxicity (e.g., vasodilators, anticoagulants, etc.)

Example

- Non-clinical toxicology studies determined a NOAEL of 15 mg/kg in dogs, 50 mg/kg in rats, and 50 mg/kg in monkeys.
- Conversion to HED
 - Division method:
 15 mg/kg (dog) / 1.8 = 8 mg/kg
 50 mg/kg (rat) / 6.2 = 8 mg/kg
 50 mg/kg (monkey) / 3.1 = 16 mg/kg
- Appropriate HED: 8 mg/kg
- Safety factor 10:
 - Max. recommended starting dose: 0.8 mg/kg

Table 1: Conversion of Animal Doses to Human Equivalent Doses Based on Body Surface Area				
	To Convert Animal Dose in	To Convert Animal Dose in mg/kg to HED ^a in mg/kg, Either:		
Species	mg/kg to Dose in	Divide	Multiply	
	mg/m², Multiply by k _m	Animal Dose By	Animal Dose By	
Human	37			
Child (20 kg) ^b	25			
Mouse	3	12.3	0.08	
Hamster	5	7.4	0.13	
Rat	6	6.2	0.16	
Ferret	7	5.3	0.19	
Guinea pig	8	4.6	0.22	
Rabbit	12	3.1	0.32	
Dog	20	1.8	0.54	
Primates:				
Monkeys ^c	12	3.1	0.32	
Marmoset	6	6.2	0.16	
Squirrel monkey	7	5.3	0.19	
Baboon	20	1.8	0.54	
Micro-pig	27	1.4	0.73	
Mini-pig	35	1.1	0.95	

Limitations of the NOAEL/MRSD approach

- Algorithm can be too "mechanical"
- Toxicity focused, less pharmacology-based
- Does not address dose escalation
- Does not apply to locally administered drugs
- Not fully applicable to biologics
 - Often no real NOAEL measurable
 - Alternative approach using Minimum Anticipated Biological Effect Level (MABEL)

Clinical Safety Monitoring

- Non-clinical safety signals determine clinical safety monitoring
- But: be vigilent about the unknown!
 - ► Review from 150 compounds:
 - positive concordance rate (sensitivity) between observed animal and human toxicities is 70%
 - ▶ Therefore, 30% of human toxicities are not predicted.

Greaves P, Williams A, Eve M. First dose of potential new medicines to humans: how animals help. Nat Rev Drug Discov. 2004 Mar;3(3):226-36.

Summary

- If human data is lacking, non-clinical safety data crucial for
 - Dose selection
 - Planning of safety monitoring procedures in the clinical trial
 - Meeting regulatory requirements
- Human data may be more valuable than non-clinical data
- Non-clinical experiments are usually expensive, and time-consuming
- Usually no need to worry if compound is FDA approved and used within the confines of the label

Thank you

