Clinical Trial Methods Course 2017
Trials in Rare Diseases

Erika Augustine, MD, MS
University of Rochester Medical Center
August 10, 2017
Overview

Challenges in studying rare diseases

Strategies for trial design

Legislation and funding
Rare Diseases
More Common Than You Think

What is a rare disease?

In the US, a disease is defined as rare when it affects fewer than 200,000 Americans at any given time.¹

In Europe, a disease is defined as rare when it affects less than 1 in 2,000 people.²

7,000 = 300 million
In the US alone, about **1 in 10 people** suffers from a rare disease.³

- **95 PERCENT** of rare diseases do not have an FDA-approved treatment.³
- **80 PERCENT** of rare diseases are genetic.³
- **50 PERCENT** of the people affected by rare diseases are children.³
- **ABOUT 50 PERCENT** of rare diseases do not have a dedicated organization.
Key Concepts

Scientific Question
Right Outcome Measures
Participant Selection
Sound Trial Design
Effective recruitment strategies
Gain and Disseminate Knowledge
Key Concepts

Scientific Question
Right Outcome Measures
Participant Selection
Sound Trial Design
Effective recruitment strategies
Gain and Disseminate Knowledge
Rare Diseases: Preclinical Challenges

• Animal models
• Drug readiness
• Understanding of regulatory requirements
Rare Diseases: **Design Challenges**

- Unknown etiology
- Lack of natural history data
- Heterogeneous population
- Chronic diseases
- Multi-symptomatic
- No validated outcome measures, surrogate endpoints, biomarkers
- Small sample sizes

Cartoon:

Patient: Does it work?

Doctor: That depends on what you mean by “does,” “it” and “work.”

Footnote: Things got really interesting when the statistician started doing ward rounds.
Rare Diseases: Recruitment and Implementation Challenges

- Number of patients
- Geographic dispersion, travel burden
- Clinical research workforce
- Trial infrastructure
- Understanding of regulatory requirements
- Competing trials and off-label use of drugs
- Pediatric diseases
Challenges in CNS Therapeutic Development

Success rates from first-in-man to registration

Higher Success Rates for Rare Disease

General Design Considerations

• Understand natural history!

• Adapt outcome measures, biomarkers, or surrogate endpoints from common diseases

• Continuous measures, repeated measures

• Extend treatment period

• Sample selection

• α-level
Alternatives to the RCT

- Open-label
- Factorial designs
- N-of-1 studies
- Crossover studies
- Randomized withdrawal
- Adaptive designs
Small, uncontrolled trials

• Disease follows a homogenous clinical course

• Anticipated effect size is large
Recombinant human acid α-glucosidase

Major clinical benefits in infantile-onset Pompe disease

P.S. Kishnani, MD*; D. Cerzo, MD*; M. Nicolino, MD, PhD; B. Byrne, MD, PhD; H. Mandel, MD;
W.L. Hwu, MD, PhD; N. Leslie, MD; J. Levine, MD; C. Spencer, MD; M. McDonald, MD; J. Li, MD;
J. Dumontier, MD; M. Halberthal, MD; Y.H. Chien, MD; R. Hopkin, MD; S. Vijayaraghavan, MD;
D. Gruskin, MD, PhD; D. Bartholomew, MD; A. van der Ploeg, MD, PhD; J.P. Clancy, MD; R. Parini, MD;
G. Morin, MD; M. Beck, MD, PhD; G.S. De la Gastine, MD; M. Jokic, MD; B. Thurberg, MD, PhD;
S. Richards, PhD; D. Bali, PhD; M. Davison, MD; M.A. Worden, BS; Y.T. Chen, MD, PhD; and J.E. Wraith, MD
Table 3: Proportion of Matched Symptomatic Pediatric Patients with CLN2 Disease without Decline* in the Brineura Single-Arm Clinical Study with Extension and in the Natural History Cohort assessed at Weeks 48, 72, and 96

<table>
<thead>
<tr>
<th>Time Point/Period</th>
<th>Natural History Cohort (N=17)</th>
<th>Brineura-Treated (N=17)</th>
<th>Difference % (95% CI**)</th>
<th>Odds Ratio** (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follow-up through Week 48</td>
<td>13 (76)</td>
<td>16 (94)</td>
<td>18% (-19, 51)</td>
<td>4 (0.4, 200)</td>
</tr>
<tr>
<td>Follow-up through Week 72</td>
<td>11 (65)</td>
<td>16 (94)</td>
<td>29% (-7, 61)</td>
<td>5.9 (0.7, 250)</td>
</tr>
<tr>
<td>Follow-up through Week 96</td>
<td>6 (35)</td>
<td>16 (94)</td>
<td>59% (24, 83)</td>
<td>11 (1.6, 500)</td>
</tr>
</tbody>
</table>

*Decline is defined as an unreversed (sustained) 2-category decline or unreversed score of 0 in the Motor domain of the CLN2 Clinical Rating Scale.

![Graph showing Proportion of Matched Patients without Decline in Motor Function](image)

*94% of Brineura-treated patients (16/17) had no decline in motor function from week 48 through 96.†
Crossover Studies

- Each participant serves as own control
- Symptomatic relief
- Limited carry-over effect
N-of-1 Design

- Specialized crossover study
- Single patient
- Symptomatic treatments
2×2 Factorial design

<table>
<thead>
<tr>
<th></th>
<th>Drug A</th>
<th>Drug B</th>
<th>Drug A+B</th>
<th>Neither Drug</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Image]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Used when it is desired to study the influence of a number of factors on the treatments compared as well as their interaction with different treatments.
Randomized start

Randomized withdrawal

McQuay et. al., 2008
Recruitment Challenges

- Complex diseases
- Physical impairments
- Poor QoL
- Clinical heterogeneity
- Fragmentation of patient-related information

- Multiple specialists
- Numerous visits
- Lack of services
- Travel distance
- Need for family care
- Lost time from work

- Access to research
- Recruitment and retention
- Ascertainment bias
Everyone with the Disease

Everyone with the Diagnosis

Accessible patients

Suitable patients

Recruited to Trial

Close to 80% of clinical trials fail to meet milestones
The process of translating lab research into potentially life-saving treatments is often severely delayed
Patient enrollment challenge is the leading cause of missed clinical trial deadlines
Recruitment strategies

• Patient Groups
• Disease networks
• International
• Multi-media
• Build relationships through continued engagement
• Registries
• Share information
• Plan for extended accrual
Legislation and Funding
The Orphan Drug Act (ODA)

- Decade prior to 1983 – only ~1 drug/year independently developed by pharmaceutical sponsors

- Legislation needed to promote rare disease drug development

- The Orphan Drug Act signed into law on Jan. 4, 1983
Basic Definitions

• What is an orphan drug?
 – Drug (or biological product) used for the prevention, diagnosis or treatment of a rare disease in the US; OR
 – Drug that will not be profitable within 7 years following approval by the FDA

• What is a rare disease?
 – Disease/condition that affects <200K people in the US

• Incentives
 – Tax Credits – 50% of clinical trials costs
 – Waiver of User Fees - $1.9 M
 – 7-year Marketing Exclusivity
Review of a Designation Request

1. What is the disease/condition?
2. Is the disease rare (prevalence)?
3. Is there sufficient scientific rationale that demonstrates “promise” that the drug/biologic will treat, diagnose or prevent the disease/condition at issue?

- Once designated, sponsor is required to submit annual reports until drug is approved
The Orphan Drug Act has had strong impact and rare disease approvals are on the rise

Source: FDA Law Blog
FDA Expedited Programs for Serious Conditions

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Fast Track</th>
<th>Breakthrough Therapy</th>
<th>Accelerated Approval</th>
<th>Priority Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criteria</td>
<td>Serious condition</td>
<td>Serious condition</td>
<td>Serious condition</td>
<td>Serious condition</td>
</tr>
<tr>
<td>Non-clinical or clinical data show potential to address unmet need</td>
<td>Preliminary clinical evidence shows potential for substantial improvement over current therapies</td>
<td>Meaningful advantage over available therapies AND effect on surrogate endpoint</td>
<td>Significant improvement in safety or effectiveness</td>
<td></td>
</tr>
<tr>
<td>Program</td>
<td>Designation</td>
<td>Designation</td>
<td>Approval Pathway</td>
<td>Designation</td>
</tr>
<tr>
<td>Features</td>
<td>Rolling review</td>
<td>Rolling review</td>
<td>Approval based on surrogate endpoint</td>
<td>Shorter clock for review of marketing application</td>
</tr>
<tr>
<td>Actions to expedite development and review</td>
<td>Actions to expedite development and review</td>
<td>Approval based on surrogate endpoint</td>
<td>\</td>
<td>Intensive guidance on efficient development</td>
</tr>
</tbody>
</table>

Funding Sources

- Federal
- Industry – Orphan designation & incentives
- Foundation
- Multiple Sources
FDA Orphan Products Grant Program (R01)

- Phase 1 $250,000/year up to 3 years
- Phase 2 or 3 $500,000/year up to 4 years
- Must be conducted under an active IND
- Annual February deadline

http://www.fda.gov/forIndustry/DevelopingProductsforRareDiseasesConditions/WhomtoContactaboutOrphanProductDevelopment/default.htm
FDA Orphan Products Natural History Program (R01)

- Prospective natural history studies
 - up to $400,000/year for 5 years
- Retrospective natural history or survey studies
 - up to $150,000/year for 2 years
- October 15, 2018 deadline

http://www.fda.gov/ForIndustry/DevelopingProductsforRareDiseasesConditions/OrphanProductsNaturalHistoryGrantsProgram/default.htm
Validation of tools for outcomes assessment
• Maximum 5 years, no specific budgetary limit
• August 2017, February 2018 deadlines

NINDS Child Neurologist Career Development Program (K12)

• $85k Salary support, $38k research & travel support, 3 years
• Letter of intent deadline summer, annually
• Submission deadline August, annually

CNCDP Minority Research Scholars Program
Deadline, August 15, 2017

http://cncdp-k12.org/
References

