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Summary:

Traditional paradigms for clinical translation are challenged in settings where multiple 

contemporaneous therapeutic strategies have been identified as potentially beneficial. Platform 

trials have emerged as an approach for sequentially comparing multiple trials using a single 

protocol. The Ebola virus disease outbreak in West Africa represents one recent example which 

utilized a platform design. Specifically, the PREVAIL II master protocol sequentially tested new 

combinations of therapies against the concurrent, optimal standard of care (oSOC) strategy. Once 

a treatment demonstrated sufficient evidence of benefit, the treatment was added to the oSOC for 

all future comparisons (denoted as segments throughout the manuscript). In the interest of 

avoiding bias stemming from population drift, PREVAIL II considered only within-segment 

comparisons between the oSOC and novel treatments and failed to leverage data from oSOC 

patients in prior segments. This article describes adaptive design methodology aimed at boosting 

statistical power through Bayesian modeling and adaptive randomization. Specifically, the design 

uses multi-source exchangeability models to combine data from multiple segments and adaptive 

randomization to achieve information balance within a segment. When compared to the PREVAIL 

II design, we demonstrate that our proposed adaptive platform design improves power by as much 

as 51% with limited type-I error inflation. Further, the adaptive platform effectuates more balance 

with respect to the distribution of acquired information among study arms, with more patients 

randomized to experimental regimens.
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1. Introduction

The current translational paradigm for evaluating novel therapies is to test therapies one-at-

a-time over the course of a series of two-arm trials comparing a single proposed therapy to 
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an established standard of care therapy. Frequently there exists a “latency” period between 

each trial as the next study is designed and implemented, extending the time needed to 

complete the process of evaluating multiple therapies. In settings, such as oncology, wherein 

multiple diverse competing therapies are emerging in a contemporary period of time, master 

protocols facilitating trial consolidation have been proposed to limit redundancies. For 

example, platform trials enable multiple therapeutics to enter and exit the trial seamlessly in 

order to reduce the overall sample size, reduce the overall time needed to compare the 

multiple therapies, and improve efficiency when compared to conducting multiple 

independent two-arm trials (Renfro and Sargent, 2016; Hobbs et al., 2016).

The gains in efficiency from utilizing platform designs may be valuable in a general context, 

but can be critical in settings that require rapid evaluations of emerging therapies, such as the 

highly infectious Ebola virus disease (EVD) outbreak in West Africa beginning in March 

2014. Initial case mortality estimates were as high as 74% and there was little to no evidence 

for clinical efficacy of potential therapies, which prompted the need for rapid evaluation of 

multiple candidate therapies (WHO, 2016; Schieffelin et al., 2014). With the need to test the 

clinical effectiveness of multiple agents and rapidly incorporate effective combinations into 

the standard of care strategy, the outbreak posed challenges to the traditional translational 

paradigm. In the presence of limited prior information for this particular strain of EVD as 

well as the potential for disease evolution, investigators were confronted with the urgent 

need to identify beneficial treatments or combinations of treatments as quickly as possible 

while maintaining traditional clinical trial benchmarks such as activity, safety, and efficacy.

In response to this need, the National Institutes of Health (NIH) launched PREVAIL II, a 

randomized clinical trial to evaluate medical countermeasures against EVD, in March of 

2015 (Dodd et al., 2016; PREVAIL et al., 2016). A modified platform trial, PREVAIL II was 

designed to test multiple potentially beneficial therapeutics, accelerate clinical development, 

and maintain flexibility in the context of an emerging infectious disease epidemic. Driven by 

the urgent need for new treatments, the trial had two defining characteristics. First, the 

objective of PREVAIL II was to evaluate multiple treatments within a single, master 

protocol rather than multiple independent studies. Treatments would be evaluated 

sequentially against the optimal standard of care (oSOC) which, initially, consisted only of 

supportive care (intravenous fluids, hemodynamic monitoring, etc.). As the trial progressed, 

any treatment which demonstrated a significant improvement over oSOC would be added to 

the oSOC for future comparisons, creating a combinatorial treatment regime. Second, 

PREVAIL II utilized frequent interim monitoring to allow very early termination if a new 

combinatorial treatment regime exhibited sufficient statistical evidence for a decline in the 

mortality rate with respect to the concurrent oSOC.

While the PREVAIL II platform facilitated efficiency through trial consolidation, particular 

aspects of the statistical methodology could be enhanced for future outbreaks. One major 

limitation is that the proposed design only allowed the use of contemporaneous controls. For 

instance, if the initial drug (drug A) represented a significant improvement over the oSOC in 

the initial segment of the trial, the second segment would evaluate drug B in addition to drug 

A using simple randomization, i.e. oSOC + drug A vs. oSOC + drug A + drug B, but only 

the information for subjects from segment two would be used to evaluate the efficacy of 
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drug B, representing a redundancy which ignores the information on the oSOC + drug A 

experimental combination from segment one. Although the full potential of the PREVAIL II 

study design was not realized because the epidemic subsided before the first segment 

reached full enrollment and multiple treatments were not evaluated, it is important to 

consider how the design may be improved for future evaluations of combinatorial treatment 

regimes.

In this article, we describe design methodology that uses Bayesian modeling to optimize 

platform designs devised to test multiple combinatorial therapies over a sequence of stages 

by facilitating integration of information across segments. Numerous approaches exist to 

integrate supplemental data with data from a primary source, such as Bayesian hierarchical 

modeling strategies (Neuenschwander et al., 2010), commensurate priors (Hobbs et al., 

2012), and multi-source exchangeability models (MEMs) (Kaizer et al., 2017). We will 

illustrate how MEMs and adaptive randomization can be incorporated into the PREVAIL II 

master protocol in order to effectuate balanced acquisition of information among the study 

arms and thereby maximize statistical power. Kaizer et al. (2017) illustrated that MEMs can 

be used to integrate information arising from potentially non-exchangeable populations 

while minimizing bias introduced from population drift that can occur across segments of a 

platform trial as patient registration trends may change over time with the incorporation of 

emerging experimental therapies. Integrating supplemental information using MEMs 

dynamically determines if the non-contemporaneous segments are exchangeable (in 

PREVAIL II e.g., if patient cohorts assigned to common treatment regimes exhibit evidence 

for equivalent mortality rates across segments) and thereby boost posterior effective sample 

size, in relation to the extent of evidence for bias which yields more precise estimates of the 

disease-response rate. Adaptive randomization (AR) can be used to balance allocation 

between comparator arms in relation to posterior effective sample size, increasing statistical 

power.

While there are numerous approaches to AR, we will consider an extension of the dynamic 

allocation procedure proposed by Hobbs et al. (2013), which targets information balance 

across treatment groups. MEMs are used to evaluate the evidence for exchangeability among 

current and supplemental segments as well as adapt the randomization ratio of the current 

segment to achieve the within-segment allocation that targets information balance between 

the current and supplemental control estimators and the experimental combinatorial 

estimator. Balancing information by boosting allocation to the novel experimental 

combinatorial arm improves statistical power to detect effective treatments. As effective 

novel therapies emerge in the platform, boosting allocation to the experimental 

combinatorial arm in the presence of evidence for inter-segment exchangeability among 

controls has the potential to improve outcomes for trial participants.

It is important to note that our proposed AR scheme differs fundamentally from 

conventional response- or outcome-AR methods. A recent article by Thall et al. (2015) 

evaluated the impact of outcome-AR, concluding that designs with outcome-AR have 

diminished power, necessitating a larger overall sample size. Moreover, outcome-AR risks 

imbalances in sample size in the wrong direction, assigning more patients to inferior 

treatments in the presence of the small to moderate effect sizes observed in practice. In 
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contrast, our proposed AR scheme endeavors to balance total effective information in the 

presence of potentially non-exchangeable supplemental cohorts, which maximizes power for 

comparing treatment groups.

The remainder of the manuscript proceeds as follows. First, the standard design of the 

PREVAIL II master protocol is introduced in Section 2, followed by our proposed design 

which incorporates MEMs and AR in Section 3. The scenarios considered for the simulation 

studies, the process for design calibration, and results for the simulation studies are 

presented in Section 4. We conclude with a brief discussion in Section 5.

2. Standard design of PREVAIL II master protocol

The objective of PREVAIL II was to sequentially evaluate multiple candidate therapies for 

the treatment of EVD. Each treatment was to be evaluated in a separate trial segment and 

each segment to consist of a separate randomized trial to compare the new treatment versus 

the current oSOC. Treatments found to offer a significant survival benefit when compared to 

the standard of care would be added to the standard of care for all future segments, creating 

a combinatorial treatment regime. Figure 1(I) graphically depicts an example with 3 

segments and four different treatment combinations represented by color. In Segment 1, the 

oSOC arm (white) is compared to an experimental combinatorial arm of drug A + oSOC 

(light gray) with the proportion randomized to the experimental combinatorial arm fixed at τ 
= 0.5 (represented by the equally sized triangles signifying equal enrollment throughout the 

segment). If the experimental combinatorial arm was determined to provide significant 

improvement over the standard of care, then the next trial segment would consist of a 

comparison between the updated oSOC, drug A + oSOC (light gray), and a new 

experimental combinatorial arm, drug B + drug A + oSOC (dark gray). However, if drug B + 

drug A + oSOC does not demonstrate a significant improvement, drug A + oSOC is carried 

forward to the next segment where it is compared to drug C + drug A + oSOC (darkest 

gray).

The PREVAIL II master protocol allowed for the rapid evaluation of multiple candidate 

treatments with a “Barely Bayesian” design (Proschan et al., 2016). Within a segment, 

PREVAIL II used frequent interim monitoring in the Bayesian paradigm to allow early 

termination when a treatment provided a substantial survival benefit over the standard of 

care (Dodd et al., 2016). The primary outcome for PREVAIL II was a binary indicator of 28-

day mortality. Let xA be the number of deaths, nA be the total number of subjects 

randomized, and pA be the 28-day mortality rate for hypothetical experimental 

combinatorial arm A. Define xB, nB and pB analogously for hypothetical control arm B. 

Assuming independent beta(α = 1, β = 1) priors for pA and pB results in independent beta 

posteriors with α = 1 + xA, β = 1 + nA − xA for pA and α = 1 + xB, β = 1 + nB − xB for pB.

Formal inference on the 28-day mortality rate was based on the posterior distribution. The 

posterior probability that the 28-day mortality rate in arm A is less than arm B is:
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P(pA < pB | xA, xB) = ∑
k = xA + 1

nA + 1
nA + 1

k

nB + 1
xB

(nB − xB + 1)

nA + nB + 2
k + xB

(nA + nB − k − xB + 2)
. (1)

PREVAIL II was planned with a within-segment maximum sample size of 100 subjects per 

arm. If the maximum sample size were reached, the treatment A would be declared a 

significant improvement over the control if P(pA < pB|xA, xB) ⩾ 0.975.

PREVAIL II initiated interim analyses after six subjects were randomized to each arm and 

were completed after every 2 subjects until data were available for 40 subjects, whereafter 

interim monitoring was carried out after every 40 subjects until a maximum of 200 subjects 

were enrolled (100 per arm). The trial would stop and declare arm A a significant 

improvement over arm B if P(pA < pB|xA, xB) ⩾ 0.999. Simulation results demonstrated that 

this design had an overall within-segment type-I error rate near 0.03 and 86% power to 

detect significant difference assuming a relative risk of 0.5 for the new treatment (Dodd et 

al., 2016).

3. Methods

A limitation of the PREVAIL II design is that only data from contemporaneous controls 

were used and relevant data from prior segments was ignored. In fact, after the initial 

segment, non-contemporaneous, supplemental control data exists from at least one previous 

segment. While avoiding the introduction of inter-cohort bias due to population drift, the 

PREVAIL II design makes inefficient use of the data. Utilizing Bayesian methods that 

estimate partial exchangeability across segments overcomes this inefficiency, resulting in 

increased power (or decreased total sample size), while protecting against bias due to 

population drift.

3.1 General Framework of Multi-Source Adaptive Designs

To address this limitation, we propose the general conceptual design graphically represented 

in Figure 1(II). Segment 1 is identical to the original design proposed for PREVAIL II; 

patients are randomized with a fixed allocation ratio of τ = 0.5 to the oSOC (white) or 

experimental drug A + oSOC (light gray). After the first segment, however, supplemental 

information from non-contemporaneous controls will have been acquired from past 

segments. This information can be integrated into future comparisons using a dynamic 

Bayesian model. Figure 1(II) depicts data acquired from prior segments by rectangles with 

diagonal lines placed in the segment of observation. For example, in Segment 2, 

supplemental data for the controls are available from Segment 1, which in our figure arises 

from the light gray study arm. In Segment 3, supplemental data for the controls are available 

from Segments 1 and 2.
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Incorporating supplemental control information from previous segments can potentially 

result in imbalances in the total effective information between comparator arms if a fixed 

allocation ratio of τ = 0.5 is maintained. Extending the adaptive randomization (AR) method 

proposed by Hobbs et al. (2013) to the setting of a sequential platform design attenuates this 

imbalance and maximizes power. This is achieved by allowing the allocation ratio to vary as 

a function of the effective supplemental sample size (ESSS). ESSS is a measure reflecting 

the extent of relative gain in the posterior precision obtained from a Bayesian model when 

compared to a model that neglects the supplemental sources. The measure is intended to 

characterize the effective number of samples incorporated from supplemental sources. By 

defining the allocation ratio as a function of ESSS, the proposed AR method aims to balance 

total information across groups within a segment. Within Figure 1(II) the allocation ratio is 

represented by the differing slopes, which are adjusted in relation to the extent of estimated 

exchangeable data contributed by concordant treatment regimes during segments 2 and 3.

The remainder of this subsection presents notation to explain the general framework for 

multi-source AR. During the initial period of a segment, 1:1 allocation between arms is used 

until sufficient information is acquired to facilitate estimation of inter-segment 

exchangeability, after which block-randomization is used to update the allocation ratios 

according to estimates of ESSS. Let nburn represent the number of patients observed for the 

“burn-in” period at the start of a segment with supplemental information available, ℬ
represent the total number of blocks to adaptively randomize patients after the burn-in 

period, and tb be the “time” of the bth interim analysis at the start of a block. Additionally, 

define, at tb, nA
∗ (tb) and nB

∗(tb) as the effective sample size accounting for the number assigned 

in the current segment to the experimental combinatorial and control arms and the influence 

imparted by the prior, respectively, ESSS(tb) as the estimated ESSS for the control arm, and 

R(tb) as the number of subjects left to be randomized assuming the maximum segment 

sample size is achieved. Note that, in the context of PREVAIL II, there are no supplemental 

data for the experimental combinatorial arm because a treatment that illustrates a significant 

survival benefit will be incorporated into the oSOC arm for future segments and there were 

no previous human studies of the proposed therapies. Recall, the objective is to balance total 

effective information at trial completion such that, at tb, nA
∗ (tb) = ESSS(tb) + nB

∗(tb). Thus, 

allocation is needed in relation to nA
∗ (tb) + τR = ESSS(tb) + nB

∗(tb) + (1 − τ)R. Therefore, under 

the the aim of balanced allocation, assignments to the experimental combinatorial arm for 

the next block of patients is formulated as

τ(tb) = 1
2

ESSS(tb) + nB*(tb) − nA*(tb)
R(tb) + 1 . (2)

τ(tb) can range between 0 and 1 depending on the extent of shrinkage to supplemental 

information with a value of 0 implying all patients are randomized to the control arm, a 

value of 0.5 implying a 1:1 allocation ratio, and a value of 1 implying all patients are 

randomized to the experimental combinatorial arm.
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3.2 Incorporating supplemental information with Bayesian modeling using MEMs

Our proposed multi-source adaptive design as described thus far is general and can be 

enacted using any method for incorporating supplemental information. While many methods 

exist for incorporating supplemental information, the multi-source exchangeability model 

(MEM) framework is specifically considered herein based on recent efforts demonstrating 

its desirable properties for yielding shrinkage estimators in the presence of non- or partially 

exchangeable cohorts while avoiding highly parameterized models (Kaizer et al., 2017).

The MEM framework takes the H supplemental segments available for incorporation and 

maps them to 2H = K multi-source exchangeability models, denoted Ωk, which represent all 

possible exchangeability relationships between the current and H supplemental segments. 

For example, referring back to Figure 1(II), segment 3 would have four possible MEMs: no 

supplemental segments assumed exchangeable with segment 3 (Ω1), only segment 1 

assumed exchangeable with segment 3 (Ω2), only segment 2 assumed exchangeable with 

segment 3 (Ω3), and both segments 1 and 2 assumed exchangeable with segment 3 (Ω4). The 

MEM framework produces a posterior estimate over these K models using posterior model 

weights, ωk, such that Σk = 1
K ωk = 1. A resultant smoothed posterior estimator synthesizing 

all possible exchangeability relationships is used for inference.

If the standard beta-binomial model is updated to accommodate MEMs in the control arm 

(arm B), a similar structure to the original PREVAIL II master protocol can be utilized 

which is able to incorporate supplemental data from previous segments, making more 

efficient use of available evidence and potentially improving the power of the trial. In the 

setting of PREVAIL II, we have supplementary data for the control arm, arm B, but not for 

the experimental combinatorial arm, arm A. Therefore, we will model arm A using the beta-

binomial model and model arm B using MEMs. Introducing formal notation, the marginal 

posterior distribution of pB given the observable data, D, from the current segment’s controls 

and the observable data from H supplemental segments is derived as the weighted average of 

the posterior distributions for the K multi-source exchangeability models, q(pB|Ωk, D):

q(pB |D) = ∑
k = I

K
ωkq(pB |Ωk, D) . (3)

The posterior model weight, ωk, for each MEM is given by

ωk = pr(Ωk |D) =
p(D |Ωk)π(Ωk)

∑ j = I
K p(D |Ω j)π(Ω j)

, (4)

where p(D|Ωk) is the integrated marginal likelihood for Ωk and π(Ωk) is the prior probability 

that Ωk is the true model. The formulation of posterior model weights in (4) utilizes a 

framework similar to Bayesian model averaging (BMA), however the MEM framework 

reduces the dimension of the prior weight space by enabling specification on the 

supplemental sources rather than models as described by Kaizer et al. (2017).
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Using the notation from Section 2 for arm A and the current segment for arm B, let xB,h be 

the number of deaths observed in arm B for non-contemporaneous supplemental segment h 
(h = 1, …, H), nB,h be the number of subjects randomized to arm B in segment h, and pB,h, 

be the 28-day mortality rate for arm B in segment h. Let Sh denote an indicator function of 

whether or not the data observed in supplementary segment h is assumed exchangeable with 

data observed for the contemporaneous control (i.e., if Sh = 1, pB,h = pB). A model, Ωk, is 

then defined by considering a set of source-specific binary indicators, (S1 = s1,k, …, SH = 

sH,k), where sh,k indicates whether or not source h is assumed exchangeable with the primary 

data in Ωk. Assuming independent beta(α,β) priors on pB and pB,1,…pB,H, where each 

supplemental source could have different specified values for α and β, the integrated 

marginal likelihood for each MEM can be written as follows:

p(D |Ωk) =
B xB + α + ∑h = 1

H sh, kxB, h, nB + β − xB + ∑ j = 1
H s j, k(n j − xB, j)

B(α, β

× ∏
i = 1

H B(xi + α, ni + β − xi)
B(α, β)

1 − si, k

,

(5)

where B(c, d) = Γ (c) Γ (d)
Γ (c + d)  represents the beta function. The marginal likelihood results in the 

following MEM-specific posterior distribution used to calculate the marginal posterior 

distribution in (3):

q(pB |D, Ωk) = Beta xB + α + ∑
h = 1

H
sh, kxh, nB + β − xB + ∑

j = 1

H
s j, k(n j − x j) . (6)

Therefore the posterior distribution of (3) for the 28-day mortality rate for the MEM 

estimator is a mixture of beta distributions encompassing all possible exchangeability 

relationships.

Since supplementary data are only available for the control arm, the marginal posterior 

probability that pA < pB is a weighted average of the conditional posterior probability that 

pA < pB for all possible assumptions about exchangeability:

PMEM(pA < pB | xA, xB) = ∑
i = 1

K
ωiP(pA < pB, Ωi

| xA, xB, Ωi
) . (7)

Prior to implementing AR with MEMs, a 1:1 allocation ratio is assumed during the burn-in 

period. The specific calculations used for ESSS in (2) are defined as follows. For each 

individual MEM, the posterior effective sample size (ESS) can be generally derived as

Kaizer et al. Page 8

Biometrics. Author manuscript; available in PMC 2019 June 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ESS(Ωk) = α + β + nB + ∑
h = 1

H
sh, knB, h . (8)

The posterior ESSS for the overall MEM estimate is then calculated as the weighted average 

of the difference from each individual MEM’s ESS and the current control arm’s sample 

size: ESSS = Σk = 1
K ωk[ESS(Ωk) − nB]. Further, it should be noted that the beta(α,β) prior in 

the beta-binomial model confers the effective information of α + β subjects in (8). 

Therefore, the MEM facilitates a non-zero ESSS of α + β when assuming the prior 

probability of 1 on the independence model (e.g., the model which does not borrow strength 

across segments).

3.3 MEM prior probability specification

As with any Bayesian model, the properties of MEMs depend on the prior specification 

assumed for the model weights, with more flexible choices imparting robustness for 

posterior inference. Since supplemental sources are assumed independent in the MEM 

framework, the prior model weight formulation can be specified as the product of the 

source-specific prior inclusion probabilities: π(Ωk) = π(S1 = s1,k, …, SH = sH,k) = π(S1 = 

s1,k) × ⋯ × π(SH = sH,k) (Kaizer et al., 2017). While there are numerous strategies to 

identify potential priors for each source, this section considers specific fully Bayesian and 

empirical Bayesian approaches which were found to achieve desirable operating 

characteristics in our simulation study.

Our proposed fully Bayesian prior, denoted by πe, assumes equal prior weight for inclusion 

and exclusion for all supplementary sources: πe(Sh = 1) = 1
2 . This prior provides impartiality 

to which supplemental segments are considered exchangeable with the primary segment.

In contrast to the fully Bayesian approach, an empirical Bayesian (EB) approach utilizes the 

data collected to inform the prior distribution by maximizing the marginal likelihood with 

respect to the prior weights. For the proposed MEM model for binary data discussed above, 

the marginal likelihood is maximized by placing a prior inclusion weight of 1 on sources 

assumed exchangeable, while all other supplemental sources receive a prior inclusion weight 

of 0. This induces posterior weights of 1 for the model which maximizes the marginal 

density and 0 for all other models. The proposed EB prior is denoted by πEB.

Placing all of the weight on a single MEM, however, may induce less than ideal operating 

characteristics under circumstances where the marginal density of multiple MEMs may be 

close to the maximum marginal density. Therefore, a constrained EB prior is proposed, 

denoted πEBc, where 0 ⩽ c ⩽ 1, such that the marginal density is maximized under the 

constraint that the prior source inclusion probabilities must be less than c. This results in a 

prior inclusion probability of c for segments assumed exchangeable in the MEM that 

maximizes the marginal density, with all other segments receiving a prior inclusion 

probability of 0, and the potential for multiple MEMs to receive positive prior support. 

When c =1, the standard EB formulation is achieved, and when c = 0, there is no borrowing 
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of supplemental information. Constraining the optimization over Ωk with πEBc attenuates 

bias and avoids over smoothing in the presence of limited evidence for exchangeability. 

Section A of the Supplementary Materials provides an illustrative example of the posterior 

model weights under both proposed MEM priors with three supplemental segments.

3.4 Analytic Trial Example

To better illustrate the differences between the PREVAIL II study design and our proposed 

multi-source adaptive platform design using MEMs with the πe and πEB10 priors we 

implement a two-segment trial example which assumes interim monitoring after every 40 

subjects. Table 1 provides an example of a hypothetical trial which extrapolates the observed 

mortality rates from the first segment of PREVAIL II of 37% for the control arm (oSOC) 

and 22% in the experimental combinatorial arm (drug A) to a maximum sample size of 100 

patients per arm. The results for Segment 1 are identical for all proposed approaches because 

no supplemental data were available that could be incorporated into Segment 1 in the context 

of the EVD outbreak. While the first segment does not cross the posterior probability 

threshold at the interim analyses, it does at the fifth and final analysis with a posterior 

probability of 0.9898 compared to the threshold used for the end of a segment of 0.975.

Results in Table 1 for Segment 2 are presented separately for each approach because 

supplemental data exist and the results will be different depending on our approach to 

incorporating supplemental control data. In Segment 2 we assume the new experimental 

combinatorial arm consists of drugs A+B and reduces the mortality rate to approximately 

11% versus the 22% of drug A alone, the new control arm. It can be noted that with our 

proposed AR scheme, both MEM priors increase the potential number of responders 

randomized to the experimental combinatorial arm compared to PREVAIL II. In addition, 

incorporating exchangeable supplemental information increases the posterior probability of 

superiority due to a more precise estimate of the treatment effect, which will increase power.

4. Simulation Study

Simulation was used to evaluate and compare the operating characteristics of the PREVAIL 

II master protocol and the proposed multi-source AR approach. Data were generated 

assuming an underlying mortality rate, posoc, for oSOC alone, and the mortality rate for each 

potential drug combination was defined through a multiplicative model utilizing the relative 

risk (RR) of each drug and assuming no interactions. For example, the mortality rates for the 

various combinations of oSOC and two potential treatments are:

oSOC = poSOC,
oSOC + Drug A = poSOC × RRA,
oSOC + Drug B = poSOC × RRB,
oSOC + Drug A + Drug B = poSOC × RRA × RRB .

The multi-source AR approach assumes independent beta(α = 1, β =1) priors for pA and pB 

and hypothesis testing at the interim and final analyses is based on the marginal posterior 

probability that pA is less than pB. As in PREVAIL II, our proposed design will stop and 

declare the experimental combinatorial arm to be a significant improvement over the control 
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if P(pA < pB|xA, xB) > 0.999 for any interim analysis. The posterior probability thresholds 

used at the final analysis will be calibrated for each prior to achieve the desired operating 

characteristics, as described in Section 4.1.

Operating characteristics are compared between PREVAIL II, the multi-source AR approach 

using MEMs with πe and πEBc, and the naive approach of pooling all available 

supplemental information regardless of exchangeability, which will maximize the amount of 

supplemental information available, but introduces a prohibitive extent of bias in the 

presence of non-exchangeable supplementary segments. Rather than adopting the aggressive 

interim monitoring of PREVAIL II, we propose interim monitoring after the enrollment of 

every 40 subjects until the end of the burn-in period, where it will then follow the practical 

schedule of interim analyses at the start of each block, at tb, with nburn = 60 and ℬ = 5. This 

implies interim analyses after 40, 60, 95, 130, and 165 patients were observed, but updating 

the allocation ratio using (2) only occurs after 60, 95, 130, and 165 patients are observed. If 

the trial does not terminate early for superiority it will proceed to enroll a total of 200 

patients in the current segment and conduct the final analysis after all information is 

collected. Additionally, bounds are placed on (2) to ensure τ(tb) ∊ [0,1].

We considered the sequential testing of 5 potential therapeutics in the context of our 

platform design with two scenarios for the underlying oSOC mortality rate: (1) a constant 

mortality rate for all segments: p = 0.40 and (2) a decreasing mortality rate by segment, p = 

(0.74, 0.61, 0.48,0.36, 0.23). These decreasing values reflect observed mortality rates as the 

Ebola epidemic progressed from May 2014 to December 2014 in Sierra Leone (Dodd et al., 

2016). The varying mortality scenario is more challenging for MEMs since the supplemental 

controls are not exchangeable, in which case minimal borrowing is preferred.

Further, five different therapeutic RR profiles are examined: (1) all drugs have a null effect 

(RR=1) and (2-5) one drug in the treatment pipeline has a moderate effect in segment 2, 3, 4, 

or 5 with RR=0.7. In a rapidly evolving epidemic it may very well be that no or very few of 

the included therapeutics demonstrate an improvement. Moreover, location in the pipeline 

may impact the platform’s operating characteristics.

4.1 Design calibration

To provide context, the original PREVAIL II design had a type-I error rate of around 0.03 

with 86% power to reject the null hypothesis assuming a RR of 0.5, a baseline 28-day 

mortality rate of 0.4, and a posterior probability threshold of 0.975 at the final analysis 

within a segment if the trial did not terminate early. While the same posterior probability 

threshold could be used for MEMs, performance will be optimized if the posterior 

probability threshold is optimized to achieve the desired operating characteristics. 

Furthermore, optimal characteristics may be achieved with a threshold that varies by 

segment because more supplemental information will be available at later segments as 

compared to earlier segments.

Given the two scenarios for the underlying mortality rate, two potential processes to 

calibrate the posterior probability thresholds are considered. First, thresholds can be 

calibrated to achieve a type-I error rate of approximately 0.025 within a segment for the 
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constant mortality scenario. The operating characteristics under the varying mortality 

scenario can be evaluated to determine if the inflation in the type-I error rate is within 

acceptable levels. Alternatively, thresholds can be calibrated while considering both 

scenarios in order to limit type-I error inflation in the varying mortality scenario while 

maintaining similar power in the constant mortality scenario to that observed under the 

PREVAIL II design.

To address the first case, potential thresholds are identified via simulation without interim 

monitoring using a gradient descent algorithm with nburn = 60 and ℬ = 5 until the average 

segment-wise type-I error rate is between 0.024 and 0.026. These estimates are used as the 

initial values to further refine thresholds to achieve desired performance. In the second case, 

thresholds are identified in a segment-by-segment fashion. The aim of the second approach 

is to achieve power that is equal to or greater than the PREVAIL II design in the constant 

mortality scenario while attempting to minimize inflation of the type-I error rate in the 

varying mortality scenario. The latter approach may result in a trade-off between power and 

type-I error but, in the context of an emerging disease outbreak, enhanced power for limited 

type-I error inflation may be preferable. It can also be noted that the latter approach is 

dependent on the proposed underlying morality rates for the simulations, and that in our 

context we benefit from ex post facto knowledge of the epidemic. In practice, plausible 

scenarios need to be developed in conjunction with clinical experts with thresholds identified 

to balance the trade-off of type-I error and power between competing mortality profiles 

determined via the latter approach.

4.2 Results

25,000 simulated trials were completed for each scenario. Operating characteristics are 

presented for the original design of the PREVAIL II master protocol as well as the adaptive 

platform using MEMs with the fully Bayesian uniform prior (πe), MEMs with the 

constrained EB prior (πEBc), and naive pooling. Results are presented for thresholds 

calibrated to achieve the desired type-I error rate in the constant mortality scenario as 

described in Section 4.1. The value of c = 0.10 was selected for πRBc based on extensive 

sensitivity analyses (not presented) that considered values of c from 0.05 to 0.50.

The operating characteristics presented for each scenario include the probability of attaining 

a positive test within a segment based on the Bayesian posterior probability thresholds (i.e., 

the probability of rejecting), the mean (sd) total number of subjects (N) treated throughout 

all segments as a measure of early termination, the mean (sd) proportion randomized to the 

experimental combinatorial arm in segments 2-5 as a measure of AR performance, and the 

mean (sd) proportion who survived either across segments 2-5 in the null case or in the 

specific non-null segment in scenarios with an efficacious therapy. When considering a drug 

under the null case it is ideal to rarely attain a positive test within a segment (i.e., have a 

probability of rejecting near 0), whereas it is desirable to attain a positive test within 

segments with efficacious treatments (i.e., have a probability of rejecting near 1). Further, 

the proportion surviving in the null scenario is expected to be identical in PREVAIL II and 

the proposed AR design, but an improvement in survivorship is expected in non-null 
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segments when the AR design effectuates more allocation to the experimental combinatorial 

arm.

Table 2 presents simulation results for the constant mortality scenario. The average type-I 

error rate across segments for MEMs is similar to or less than the average type-I error for the 

PREVAIL II master protocol. However, the power to detect an effective drug is higher in 

every non-null segment for πEB10 and πe compared to PREVAIL II, with increases in power 

ranging from 9% to 27% and 29% to 69% for πEB10 and πe, respectively. Naive pooling, 

which represents the best-case upper bound on performance in the presence of a constant 

mortality rate, results in similar or reduced type-I error rates compared to those observed in 

PREVAIL II with increases in power of 34% to 76% across all segments.

Operating characteristics are summarized visually in the left panel of Figure 2, where open 

triangles represent the results for the PREVAIL II design, closed shapes represent 

approaches incorporating supplemental information, and the different shades of gray identify 

the segment. In the presence of a constant mortality rate, all 8 MEM-based designs have 

increased power compared to PREVAIL II while 6 also have lower average type-I error 

rates.

While a moderate RR=0.7 results in minimal early termination, as observed by the average 

sample size estimates near 1000 for each overall trial, AR balances the information available 

for evaluating the control and experimental combinatorial arms, with the positive byproduct 

of more patients receiving a potentially beneficial treatment in the MEM-based designs than 

the PREVAIL design. Across segments, we observed an absolute maximum increases of 

15.5% and 29.7% in the proportions assigned to the experimental combinatorial arm for 

πEB10 and πe, respectively. This also corresponds to increases in the proportion surviving 

within non-null segments for the MEM-based designs compared to the PREVAIL II design 

with improvements observed for both πEB10 and πe. Figure 3(a) presents the proportion 

randomized to the experimental combinatorial group and Figure 3(b) presents the proportion 

surviving by segment for all designs in the constant mortality scenario. πe and naive pooling 

randomize a similar number to the control group, while πEB10 is more conservative. The 

MEM-based designs and naive pooling show clear increases in the median proportion 

surviving in each non-null scenario compared to the PREVAIL II design.

Table 3 presents simulation results for the varying mortality scenario using the thresholds 

calibrated for the constant mortality scenario. The PREVAIL II design maintains a type-I 

error rate between approximately 0.025 to 0.03 since no supplemental information is 

incorporated across segments, but the power steadily decreases with each segment as the 

underlying mortality rate continues to drop and the absolute difference in the mortality rate 

due to an effective treatment shrinks. Figure 2 clearly identifies that the MEM-based design 

with πe (filled-in triangles) and naive pooling (filled-in diamonds) result in drastic inflation 

to the average type-I error rates, which negate any benefit from increased power relative to 

the PREVAIL II design. However, the more conservative πEB10 prior (filled-in squares) 

demonstrates a more acceptable trade-off, where the largest inflation of the type-I error rate 

in segment 5 increases from 0.026 for the PREVAIL II design (open triangles) to 0.064 for 

πEB10, while power increases from 2% to 51% across non-null segments. Figures 3 (c) and 
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(d) demonstrate similar operating characteristics to the constant mortality scenario, where 

the MEM-based designs and naive pooling assign higher proportions of subjects to the 

experimental combinatorial arm with increases in the proportion surviving the non-null 

segments as compared to the PREVAIL II design.

Section C of the Supplementary Materials provides additional simulation scenarios where 

thresholds are calibrated considering both mortality scenarios (C.1), effective therapies with 

RR=0.5 (C.2), varying parameters AR and MEM prior specification (C.3), and two effective 

therapies (C.4). Additionally, Section C.5 provides results when futility boundaries based on 

the posterior probability are incorporated to the trial designs.

5. Discussion

Trial consolidation with platform designs devised to sequentially evaluate multiple candidate 

therapies in a single trial may offer critical advantages in settings of biomedicine for which 

individual trials may be infeasible. With the onset of rapidly developing disease outbreaks, 

for example, clinical investigators are confronted with an urgent need to identify effective 

therapeutics as quickly as possible. During the EVD outbreak from 2014–16, the PREVAIL 

II study was designed to test multiple therapies within one overarching trial while 

incorporating aggressive interim monitoring to identify effective treatments as early as 

possible. The study design did not, however, utilize data observed within previous segments 

to improve the efficiency of the analyses, and thus is perhaps suboptimal given the 

availability of adaptive design features and Bayesian hierarchical modeling techniques. To 

address this shortcoming we proposed incorporating MEMs with AR to estimate the extent 

of exchangeability across segments with identical treatment regimes and balance allocation 

in relation to ESSS. We note, however, that this design modification could be applied with 

any approach to incorporating supplemental information. The methods presented herein 

represent a useful tool for designing platform trials not only to address future disease 

outbreaks, but any context where multiple contemporaneous therapeutic strategies exist.

There are many approaches to AR which could have been incorporated to our proposed 

design. For example, Berry and Eick (1995) compare four different response adaptive 

approaches to a standard equal randomization scheme and identify improvements using AR 

in many scenarios. More recently, Thall and Wathen (2007) explored the use of a positive 

constraint on Bayesian AR in order to limit the extent of adjusting the allocation ratio. 

Methods also exist which use biomarker information to adaptively randomize individuals 

during a study to more advantageous trial arms based on an individual’s biomarker profile 

(Zhou et al., 2008) or to adjust patient allocation in trials with binary outcomes to address 

covariate imbalances such that more patients can access the superior treatments identified in 

the study (Ning and Huang, 2010). Other methods use predictive probability and Bayesian 

AR to treat more patients with the more effective treatment while enabling early termination 

if superiority or equivalence can be demonstrated before trial completion (Yin et al., 2012).

Outcome-AR techniques, however, which can lead to sample size imbalances or poor 

operating characteristics are controversial (Thall et al., 2015). Our proposed design utilizes 

AR to target information balance, resulting in additional allocation to experimental therapies 
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in the presence of exchangeable information from supplemental controls. In the context of 

the EVD outbreak, where concerns were raised about the appropriateness of randomized 

trials due to ethical or practical concerns (Adebamowo et al., 2014; Ippolito et al., 2016), the 

modified multi-source adaptive platform design offers perhaps an ideal trade-off: controlling 

for cohort bias with the potential to randomize more study participants to emerging 

therapies.

It can be noted that 1:1 allocation is preserved in the absence of evidence of exchangeability. 

Further, while AR has been shown to result in potentially poor operating characteristics, 

MEMs with AR under πEB10 maintained type-I error in the constant mortality scenario with 

reasonable inflation in the varying mortality scenario, while increasing the power to detect 

an effective drug in both scenarios. This approach to AR addresses the concerns of sample 

size imbalance and potentially poor operating characteristics raised by Thall et al. (2015).

Even though the simulations and designs presented in this manuscript are unique to the EVD 

outbreak, they can be generalized to other settings of clinical study, such as a screening 

platform for intermediate-phased drug trials as well as sequential experimental designs of 

biomarker assays. In addition, a number of other parameters can be adjusted (e.g., priors on 

the MEM weights, the components of the adaptive randomization, and the frequency of 

interim monitoring) to achieve the desired operating characteristics in other settings where 

incorporating supplemental control information is desired.

Given the number of parameters to adjust, it may be challenging to identify the most 

appropriate choices given the many unknowns of a rapidly developing outbreak. However, 

this can be moderated by assuming conservative priors on the MEM weights, such as c = 0.1 

for πEBc, which ensures that posterior model weight is given to the MEM assuming no 

exchangeable segments while incorporating information in a manner that results in an 

improvement to the power, survivorship, and proportion randomized to the experimental 

combinatorial arm. The value of c reflects a boundary imposed on the probability of 

exchangeability and should be evaluated in the context of each trial. Values between 0 and 1 

should be explored, but in our experience c should be set at a low value to moderate the 

influence of πEB which ultimately assigns all posterior weight to a single MEM. Further, 

while calibration may be challenging, the πEBc prior is based on a single hyperparameter, a 

benefit compared to Bayesian non-parametric density estimation with finite- or infinite-

mixtures or the traditional BMA framework which requires sets of priors for all 2H models. 

In addition to the MEM priors discussed in the manuscript, it is possible to set priors in-

between the segments with clinician judgment to reflect the accumulated scientific 

knowledge regarding the relation of each supplemental segment to the current segment. We 

caution, however, that even the best scientific evidence cannot predict if population drift will 

impact future segments.

Another potential limitation is that simulation results presented in this manuscript only 

consider the scenario with one effective treatment across all segments. However, in the 

context of a rapidly emerging infectious disease, it is unlikely that an effective treatment will 

be present in all segments due to limited prior evaluation of the treatments. Results for cases 

with two effective treatments are presented in Section C.4 of the Supplementary Materials 
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and have similarly encouraging operating characteristics as presented in Section 4.2. Further, 

the results presented in this manuscript do not incorporate futility monitoring, which could 

limit time spent evaluating ineffective treatments. Simulation results with futility monitoring 

are presented in Section C.5 of the Supplementary Materials and have similar results as 

Section 4.2 but with slight decreases in both the average type-I error rate and power.

To this point, we have highlighted the statistical benefits of our proposed design, but a 

number of practical issues must be considered when implementing this design. As with any 

adaptive design, our proposed AR procedure is dependent on rapid endpoint acquisition. In 

some settings, however, patients may accrue before endpoints for previous subjects are 

available. In this case, methods developed for Bayesian adaptive phase I clinical trials could 

be used to implement AR in the presence of fast accrual (Cheung and Chappell, 2000; 

Koopmeiners and Modiano, 2014). In addition, real-time updates of the randomization ratio 

could be challenging in an emerging infectious disease epidemic. We propose to update the 

randomization at a fixed number of pre-planned intervals, which alleviates this concern, but 

the number of updates will largely be driven by practical concerns. Finally, PREVAIL II 

stratified randomization by country and baseline PCR cycle-threshold (PREVAIL et al., 

2016). We did not consider stratified randomization to simplify the presentation of our 

methodology, but the relative merit of balancing information overall versus within-strata 

would have to be considered when implementing our AR procedure with stratified 

randomization.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Example comparing three segments of a trial with (I) PREVAIL II master protocol which 

only compares contemporaneously enrolled subjects with equal allocation to the study arms, 

τ = 0.5, versus (II) framework with methods to potentially incorporate non-contemporaneous 

data and ability to adaptively alter the randomization ratio as a function of the effective 

supplemental sample size, π(t) = f(ESSS). Equally sized triangles further indicate segments 

with equal allocation versus smaller oSOC triangles which indicate the potential for greater 
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allocation to the experimental combinatorial arm in the presence of supplemental 

information.
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Figure 2: 
Plots demonstrating power versus average type-I error rate across scenarios for segments 2-5 

for PREVAIL II, MEMs with πEB10 and πe priors, and the naive pooling case.
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Figure 3: 
Proportion assigned to experimental combinatorial arm across segments 2-5 (left) and 

proportion surviving across segments 2-5 (Null scenario) or within the non-null segment 

(Scenarios 2-5) (right) under the constant mortality scenario (top) and the varying mortality 

scenario (bottom) for the PREVAIL II design, MEM-based designs, and naive pooling.
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Table 1:

Example analysis motivated by the PREVAIL II trial demonstrating integration of control information from 

Segment 1 (oSOC versus drug A) of the platform into the analysis of Segment 2 (drug A versus drugs A+B) 

based on the MEM approach. Mortality of 37% (oSOC group), 22% (drug A alone), and 11% (drugs A+B). 

Interim analyses conducted after every 40 subjects enrolled for all designs. PP stands for posterior probability 

that the 28-day mortality rate in the experimental combinatorial arm (drug A in Segment 1, drugs A+B in 

Segment 2) is less than the control arm (oSOC in Segment 1, drug A in segment 2) and τ is the proportion 

randomized to the experimental combinatorial arm in the subsequent segment.

Segment/Approach Interim Analysis noSOC nA nA+B xoSOC xA xA+B ESSS PP τ

Segment 1 All Approaches

1 20 20 - 7 4 - 0 0.8471 0.5

2 40 40 - 15 9 - 0 0.9253 0.5

3 60 60 - 22 13 - 0 0.9634 0.5

4 80 80 - 30 18 - 0 0.9802 0.5

5 100 100 - 37 22 - 0 0.9898 -

Segment PREVAIL II

1 - 20 20 - 4 2 0 0.7951 0.5

2 - 40 40 - 9 4 0 0.9298 0.5

3 - 60 60 - 13 7 0 0.9255 0.5

4 - 80 80 - 18 9 0 0.9699 0.5

5 - 100 100 - 22 11 0 0.9813 -

Segment 2 MEMs with πEB10

1 - 20 20 - 4 2 33.2 0.8135 0.604

2 - 36 44 - 8 5 37.8 0.9124 0.624

3 - 51 69 - 11 7 40.7 0.9661 0.642

4 - 65 95 - 14 10 42.5 0.9785 0.656

5 - 79 121 - 17 13 43.8 0.9860 -

Segment 2 MEMs with πe

1 - 20 20 - 4 2 82.3 0.8426 0.757

2 - 30 50 - 7 6 84.1 0.9303 0.767

3 - 39 81 - 9 9 85.5 0.9766 0.772

4 - 48 112 - 11 12 86.5 0.9903 0.782

5 - 57 143 - 13 16 87.3 0.9927 -
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Table 2:

Operating characteristics and trial properties for the utilized platform design as well as alternative adaptive 

platform designs. 25,000 simulations for the constant underlying mortality case (p = 0.4 for all segments) with 

RR=0.7 for non-null segments for the PREVAIL II (P-II) master protocol; MEMs incorporating adaptive 

randomization with the constrained empirical Bayes, c = .10 prior (πEB10) and the fully Bayesian uniform 

prior (πe); and the naive pooling (POOL) of all supplemental information incorporating adaptive 

randomization using posterior probability thresholds optimized for the constant mortality case. Results 

provided for power/type-I error for each segment, average (sd) total sample size (N) across entire trial, average 

(sd) proportion allocated to experimental combinatorial arm in segments 2-5, and average (sd) proportion 

surviving in the non-null segments (for Trt=S2-S5) or across segments 2-5 (for Trt=S0).

Probability Reject in Segment
Mean (sd) N Mean (sd) Prop Trt Mean (sd) Prop Surv

Trt 1 2 3 4 5

PII

S0 0.032 0.028 0.029 0.031 0.029 996 (25.58) 0.5 (0) 0.600 (0.017)

S2 0.032 0.432 0.028 0.029 0.028 988 (38.41) 0.5 (0) 0.659 (0.036)

S3 0.032 0.028 0.431 0.029 0.030 988 (38.89) 0.5 (0) 0.659 (0.036)

S4 0.032 0.028 0.029 0.434 0.028 988 (38.79) 0.5 (0) 0.659 (0.036)

S5 0.032 0.028 0.029 0.031 0.441 988 (38.78) 0.5 (0) 0.659 (0.036)

πEB10

S0 0.027 0.026 0.026 0.030 0.026 998 (14.97) 0.655 (0.029) 0.600 (0.017)

S2 0.027 0.470 0.025 0.028 0.024 990 (32.03) 0.642 (0.032) 0.669 (0.035)

S3 0.027 0.026 0.509 0.031 0.025 990 (31.49) 0.634 (0.035) 0.676 (0.035)

S4 0.027 0.026 0.026 0.548 0.028 990 (31.09) 0.638 (0.032) 0.682 (0.035)

S5 0.027 0.026 0.026 0.030 0.560 991 (30.96) 0.654 (0.029) 0.686 (0.036)

πe

S0 0.027 0.027 0.026 0.033 0.037 998 (14.63) 0.797 (0.021) 0.600 (0.017)

S2 0.027 0.556 0.017 0.020 0.026 990 (32.08) 0.785 (0.032) 0.683 (0.035)

S3 0.027 0.027 0.611 0.021 0.024 989 (32.85) 0.782 (0.038) 0.696 (0.035)

S4 0.027 0.027 0.026 0.694 0.027 988 (33.67) 0.784 (0.034) 0.701 (0.035)

S5 0.027 0.027 0.026 0.033 0.745 987 (34.80) 0.794 (0.023) 0.701 (0.035)

POOL

S0 0.027 0.022 0.030 0.036 0.040 998 (15.38) 0.825 (0.009) 0.600 (0.017)

S2 0.027 0.581 0.011 0.017 0.025 984 (37.24) 0.817 (0.024) 0.691 (0.036)

S3 0.027 0.022 0.682 0.018 0.024 982 (38.71) 0.814 (0.030) 0.701 (0.036)

S4 0.027 0.022 0.030 0.731 0.028 981 (38.51) 0.814 (0.028) 0.702 (0.036)

S5 0.027 0.022 0.030 0.036 0.778 981 (38.75) 0.821 (0.013) 0.702 (0.036)
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Table 3:

Operating characteristics and trial properties for the utilized platform design as well as alternative adaptive 

platform designs. 25,000 simulations for the varying underlying mortality case (p = (0.74, 0.61,0.48, 

0.36,0.23) for segments 1-5, respectively) with RR=0.7 for non-null segments for the PREVAIL II (P-II) 

master protocol; MEMs incorporating adaptive randomization with the constrained empirical Bayes, c = .10 

prior (πEB10) and the fully Bayesian uniform prior (πe); and the naive pooling (POOL) of all supplemental 

information incorporating adaptive randomization using posterior probability thresholds optimized for the 

constant mortality case. Results provided for power/type-I error for each segment, average (sd) total sample 

size (N) across entire trial, average (sd) proportion allocated to experimental combinatorial arm in segments 

2-5, and average (sd) proportion surviving in the non-null segments (for Trt=S2-S5) or across segments 2-5 

(for Trt=S0).

Probability Reject in Segment
Mean (sd) N Mean (sd) Prop Trt Mean (sd) Prop Surv

Prior Trt 1 2 3 4 5

P-II

S0 0.028 0.030 0.032 0.027 0.025 997 (22.73) 0.5 (0) 0.580 (0.017)

S2 0.028 0.764 0.027 0.025 0.027 972 (51.38) 0.5 (0) 0.482 (0.041)

S3 0.028 0.030 0.555 0.026 0.026 984 (42.33) 0.5 (0) 0.591 (0.038)

S4 0.028 0.030 0.032 0.386 0.026 990 (35.35) 0.5 (0) 0.693 (0.035)

S5 0.028 0.030 0.032 0.027 0.235 994 (27.80) 0.5 (0) 0.804 (0.029)

πEB10

S0 0.027 0.040 0.048 0.058 0.061 998 (16.20) 0.543 (0.016) 0.580 (0.017)

S2 0.027 0.781 0.042 0.063 0.070 971 (47.98) 0.557 (0.019) 0.487 (0.038)

S3 0.027 0.040 0.637 0.052 0.069 983 (39.13) 0.551 (0.018) 0.597 (0.036)

S4 0.027 0.040 0.048 0.511 0.057 990 (31.19) 0.546 (0.016) 0.699 (0.032)

S5 0.027 0.040 0.048 0.058 0.354 994 (24.99) 0.542 (0.016) 0.807 (0.027)

πe

S0 0.027 0.102 0.165 0.213 0.262 995 (23.33) 0.665 (0.044) 0.580 (0.017)

S2 0.027 0.854 0.094 0.236 0.326 961 (52.95) 0.689 (0.042) 0.500 (0.038)

S3 0.027 0.102 0.768 0.134 0.307 972 (46.86) 0.673 (0.042) 0.611 (0.036)

S4 0.027 0.102 0.165 0.717 0.198 980 (41.23) 0.665 (0.043) 0.712 (0.032)

S5 0.027 0.102 0.165 0.213 0.637 986 (36.15) 0.663 (0.043) 0.816 (0.027)

POOL

S0 0.027 0.342 0.729 0.561 0.736 926 (54.93) 0.785 (0.038) 0.576 (0.023)

S2 0.027 0.997 0.171 0.486 0.674 878 (48.89) 0.749 (0.034) 0.510 (0.047)

S3 0.027 0.342 0.986 0.199 0.648 884 (39.12) 0.740 (0.029) 0.621 (0.047)

S4 0.027 0.342 0.729 0.947 0.376 893 (44.84) 0.752 (0.036) 0.720 (0.039)

S5 0.027 0.342 0.729 0.561 0.955 884 (56.21) 0.773 (0.039) 0.824 (0.033)
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